Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(8): nwad117, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389143

RESUMO

The emergence of the Ediacara biota soon after the Gaskiers glaciation ca. 580 million years ago (Ma) implies a possible glacial fuse for the evolution of animals. However, the timing of Ediacaran glaciation remains controversial because of poor age constraints on the ∼30 Ediacaran glacial deposits known worldwide. In addition, paleomagnetic constraints and a lack of convincing Snowball-like cap carbonates indicate that Ediacaran glaciations likely did not occur at low latitudes. Thus, reconciling the global occurrences without global glaciation remains a paradox. Here, we report that the large amplitude, globally synchronous ca. 571-562 Ma Shuram carbon isotope excursion occurs below the Ediacaran Hankalchough glacial deposit in Tarim, confirming a post-Shuram glaciation. Leveraging paleomagnetic evidence for a ∼90° reorientation of all continents due to true polar wander, and a non-Snowball condition that rules out low-latitude glaciations, we use paleogeographic reconstructions to further constrain glacial ages. Our results depict a 'Great Ediacaran Glaciation' occurring diachronously but continuously from ca. 580-560 Ma as different continents migrated through polar-temperate latitudes. The succession of radiation, turnover and extinction of the Ediacara biota strongly reflects glacial-deglacial dynamics.

2.
Natl Sci Rev ; 8(10): nwab034, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34858606

RESUMO

The global deposition of superheavy pyrite (pyrite isotopically heavier than coeval seawater sulfate in the Neoproterozoic Era and particularly in the Cryogenian Period) defies explanation using the canonical marine sulfur cycle system. Here we report petrographic and sulfur isotopic data (δ34Spy) of superheavy pyrite from the Cryogenian Datangpo Formation (660-650 Ma) in South China. Our data indicate a syndepositional/early diagenetic origin of the Datangpo superheavy pyrite, with 34S-enriched H2S supplied from sulfidic (H2S rich) seawater. Instructed by a novel sulfur-cycling model, we propose that the emission of 34S-depleted volatile organosulfur compounds (VOSC) that were generated via sulfide methylation may have contributed to the formation of 34S-enriched sulfidic seawater and superheavy pyrite. The global emission of VOSC may be attributed to enhanced organic matter production after the Sturtian glaciation in the context of widespread sulfidic conditions. These findings demonstrate that VOSC cycling is an important component of the sulfur cycle in Proterozoic oceans.

3.
Nat Commun ; 12(1): 955, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574253

RESUMO

Geological evidence indicates that the deglaciation of Marinoan snowball Earth ice age (~635 Myr ago) was associated with intense continental weathering, recovery of primary productivity, transient marine euxinia, and potentially extensive CH4 emission. It is proposed that the deglacial CH4 emissions may have provided positive feedbacks for ice melting and global warming. However, the origin of CH4 remains unclear. Here we report Ni isotopes (δ60Ni) and Yttrium-rare earth element (YREE) compositions of syndepositional pyrites from the upper most Nantuo Formation (equivalent deposits of the Marinoan glaciation), South China. The Nantuo pyrite displays anti-correlations between Ni concentration and δ60Ni, and between Ni concentration and Sm/Yb ratio, suggesting mixing between Ni in seawater and Ni from methanogens. Our study indicates active methanogenesis during the termination of Marinoan snowball Earth. This suggests that methanogenesis was fueled by methyl sulfides produced in sulfidic seawater during the deglacial recovery of marine primary productivity.

4.
Sci Rep ; 10(1): 5794, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242080

RESUMO

Organic matter production and decomposition primarily modulate the atmospheric O2 and CO2 levels. The long term marine primary productivity is controlled by the terrestrial input of phosphorus (P), while the marine P cycle would also affect organic matter production. In the past 540 million years, the evolution of terrestrial system, e.g. colonization of continents by vascular land plants in late Paleozoic, would certainly affect terrestrial P input into the ocean, which in turn might have impacted the marine primary productivity and organic carbon burial. However, it remains unclear how the marine P cycle would respond to the change of terrestrial system. Here we reconstruct the secular variations of terrestrial P input and biological utilization of seawater P in Phanerozoic. Our study indicates that riverine dissolved P input and marine P biological utilization (i.e. the fraction of P being buried as organophosphorus) are inversely correlated, suggesting the coupling of continental P input and marine P cycle. We propose an increase of P input would elevate surface ocean productivity, which in turn enhances marine iron redox cycle. Active Fe redox cycle favors the scavenging of seawater P through FeOOH absorption and authigenic phosphate formation in sediments, and accordingly reduces the bioavailability of seawater P. The negative feedback of marine P cycle to terrestrial P input would keep a relatively constant organic carbon burial, limiting the variations of surface Earth temperature and atmospheric O2 level.

5.
Nat Commun ; 9(1): 3019, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068999

RESUMO

Termination of the terminal Cryogenian Marinoan snowball Earth glaciation (~650-635 Ma) is associated with the worldwide deposition of a cap carbonate. Modeling studies suggest that, during and immediately following deglaciation, the ocean may have experienced a rapid rise in pH and physical stratification followed by oceanic overturn. Testing these predictions requires the establishment of a high-resolution sequence of events within sedimentary records. Here we report the conspicuous occurrence of pyrite concretions in the topmost Nantuo Formation (South China) that was deposited in the Marinoan glacial deposits. Sedimentary facies and sulfur isotope data indicate pyrite precipitation in the sediments with H2S diffusing from the overlying sulfidic/euxinic seawater and Fe (II) from diamictite sediments. These observations suggest a transient but widespread presence of marine euxinia in an ocean characterized by redox stratification, high bioproductivity, and high-fluxes of sulfate from chemical weathering before the deposition of the cap carbonate.

6.
Proc Natl Acad Sci U S A ; 113(52): 14904-14909, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956606

RESUMO

Cryogenian (∼720-635 Ma) global glaciations (the snowball Earth) represent the most extreme ice ages in Earth's history. The termination of these snowball Earth glaciations is marked by the global precipitation of cap carbonates, which are interpreted to have been driven by intense chemical weathering on continents. However, direct geochemical evidence for the intense chemical weathering in the aftermath of snowball glaciations is lacking. Here, we report Mg isotopic data from the terminal Cryogenian or Marinoan-age Nantuo Formation and the overlying cap carbonate of the basal Doushantuo Formation in South China. A positive excursion of extremely high δ26Mg values (+0.56 to +0.95)-indicative of an episode of intense chemical weathering-occurs in the top Nantuo Formation, whereas the siliciclastic component of the overlying Doushantuo cap carbonate has significantly lower δ26Mg values (<+0.40), suggesting moderate to low intensity of chemical weathering during cap carbonate deposition. These observations suggest that cap carbonate deposition postdates the climax of chemical weathering, probably because of the suppression of carbonate precipitation in an acidified ocean when atmospheric CO2 concentration was high. Cap carbonate deposition did not occur until chemical weathering had consumed substantial amounts of atmospheric CO2 and accumulated high levels of oceanic alkalinity. Our finding confirms intense chemical weathering at the onset of deglaciation but indicates that the maximum weathering predated cap carbonate deposition.

7.
Nat Commun ; 7: 10317, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739600

RESUMO

Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.


Assuntos
Carbonatos/química , Fósseis , Metano/metabolismo , Dente Molar/química , Sulfatos/metabolismo , Magnésio/análise , Oxirredução , Sulfetos/metabolismo , Isótopos de Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...