Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 24(39): 7168-7172, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36169221

RESUMO

A route for the synthesis of 1,2,4-triazolium salts via oxidation of a thione precursor is demonstrated. N-Pentafluorophenyl-substituted salts are produced in 20-63% overall yields. Isolation and purification of the azolium salts are simplified compared to the traditional synthetic route. Late-stage selection of the counterion allows the synthesis of a variety of salts from a parent thione. The salts have been compared in Stetter and cross-benzoin reactions with an appreciable counterion effect in both reactions.

2.
J Org Chem ; 80(7): 3597-610, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25734574

RESUMO

An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

3.
J Am Chem Soc ; 136(21): 7539-42, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24809936

RESUMO

Morpholinone- and piperidinone-derived triazolium salts are shown to catalyze highly chemoselective cross-benzoin reactions between aliphatic and aromatic aldehydes. The reaction scope includes ortho-, meta-, and para-substituted benzaldehyde derivatives with a range of electron-donating and -withdrawing groups as well as branched and unbranched aliphatic aldehydes. Catalytic loadings as low as 5 mol % give excellent yields in these reactions (up to 99%).

4.
Org Lett ; 15(9): 2214-7, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23607338

RESUMO

An electron-deficient, valine-derived triazolium salt is shown to catalyze a highly chemo- and enantioselective cross-benzoin reaction between aliphatic aldehydes and α-ketoesters. This methodology represents the first high yielding and highly enantioselective intermolecular cross-benzoin reaction using an organocatalyst (up to 94% ee). Further diastereoselective reduction of the products gives access to densely oxygenated compounds with high chemo- and diastereoselectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA