Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(47): e202309069, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37733579

RESUMO

Viroporins are small ion channels in membranes of enveloped viruses that play key roles during viral life cycles. To use viroporins as drug targets against viral infection requires in-depth mechanistic understanding and, with that, methods that enable investigations under in situ conditions. Here, we apply surface-enhanced infrared absorption (SEIRA) spectroscopy to Influenza A M2 reconstituted within a solid-supported membrane, to shed light on the mechanics of its viroporin function. M2 is a paradigm of pH-activated proton channels and controls the proton flux into the viral interior during viral infection. We use SEIRA to track the large-scale reorientation of M2's transmembrane α-helices in situ during pH-activated channel opening. We quantify this event as a helical tilt from 26° to 40° by correlating the experimental results with solid-state nuclear magnetic resonance-informed computational spectroscopy. This mechanical motion is impeded upon addition of the inhibitor rimantadine, giving a direct spectroscopic marker to test antiviral activity. The presented approach provides a spectroscopic tool to quantify large-scale structural changes and to track the function and inhibition of the growing number of viroporins from pathogenic viruses in future studies.


Assuntos
Influenza Humana , Humanos , Prótons , Proteínas da Matriz Viral/química , Proteínas Viroporinas , Espectroscopia de Ressonância Magnética
2.
Sci Adv ; 9(29): eadh3858, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467320

RESUMO

Rhomboid proteases hydrolyze substrate helices within the lipid bilayer to release soluble domains from the membrane. Here, we investigate the mechanism of activity regulation for this unique but wide-spread protein family. In the model rhomboid GlpG, a lateral gate formed by transmembrane helices TM2 and TM5 was previously proposed to allow access of the hydrophobic substrate to the shielded hydrophilic active site. In our study, we modified the gate region and either immobilized the gate by introducing a maleimide-maleimide (M2M) crosslink or weakened the TM2/TM5 interaction network through mutations. We used solid-state nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and molecular docking to investigate the resulting effects on structure and dynamics on the atomic level. We find that variants with increased dynamics at TM5 also exhibit enhanced activity, whereas introduction of a crosslink close to the active site strongly reduces activity. Our study therefore establishes a strong link between the opening dynamics of the lateral gate in rhomboid proteases and their enzymatic activity.


Assuntos
Proteínas de Escherichia coli , Peptídeo Hidrolases , Peptídeo Hidrolases/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Membrana/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
ACS Phys Chem Au ; 3(2): 199-206, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968444

RESUMO

Protein dynamics are an intrinsically important factor when considering a protein's biological function. Understanding these motions is often limited through the use of static structure determination methods, namely, X-ray crystallography and cryo-EM. Molecular simulations have allowed for the prediction of global and local motions of proteins from these static structures. Nevertheless, determining local dynamics at residue-specific resolution through direct measurement remains crucial. Solid-state nuclear magnetic resonance (NMR) is a powerful tool for studying dynamics in rigid or membrane-bound biomolecules without prior structural knowledge with the help of relaxation parameters such as T 1 and T 1ρ. However, these provide only a combined result of amplitude and correlation times in the nanosecond-millisecond frequency range. Thus, direct and independent determination of the amplitude of motions might considerably improve the accuracy of dynamics studies. In an ideal situation, the use of cross-polarization would be the optimal method for measuring the dipolar couplings between chemically bound heterologous nuclei. This would unambiguously provide the amplitude of motion per residue. In practice, however, the inhomogeneity of the applied radio-frequency fields across the sample leads to significant errors. Here, we present a novel method to eliminate this issue through including the radio-frequency distribution map in the analysis. This allows for direct and accurate measurement of residue-specific amplitudes of motion. Our approach has been applied to the cytoskeletal protein BacA in filamentous form, as well as to the intramembrane protease GlpG in lipid bilayers.

4.
Front Mol Biosci ; 9: 905306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836929

RESUMO

Optogenetics in the conventional sense, i.e. the use of engineered proteins that gain their light sensitivity from naturally abundant chromophores, represents an exciting means to trigger and control biological activity by light. As an alternate approach, photopharmacology controls biological activity with the help of synthetic photoswitches. Here, we used an azobenzene-derived lipid analogue to optically activate the transmembrane mechanosensitive channel MscL which responds to changes in the lateral pressure of the lipid bilayer. In this work, MscL has been reconstituted in nanodiscs, which provide a native-like environment to the protein and a physical constraint to membrane expansion. We characterized this photomechanical system by FTIR spectroscopy and assigned the vibrational bands of the light-induced FTIR difference spectra of the trans and cis states of the azobenzene photolipid by DFT calculations. Differences in the amide I range indicated reversible conformational changes in MscL as a direct consequence of light switching. With the mediation of nanodiscs, we inserted the transmembrane protein in a free standing photoswitchable lipid bilayer, where electrophysiological recordings confirmed that the ion channel could be set to one of its sub-conducting states upon light illumination. In conclusion, a novel approach is presented to photoactivate and control cellular processes as complex and intricate as gravitropism and turgor sensing in plants, contractility of the heart, as well as sensing pain, hearing, and touch in animals.

5.
J Am Chem Soc ; 144(9): 4147-4157, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200002

RESUMO

The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.


Assuntos
Compostos de Amônio , Canais de Potássio , Compostos de Amônio/metabolismo , Proteínas de Bactérias/química , Íons/metabolismo , Simulação de Dinâmica Molecular , Potássio/metabolismo , Canais de Potássio/química , Conformação Proteica , Água/metabolismo
6.
J Biol Chem ; 298(1): 101472, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890646

RESUMO

Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes-a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods. Here, we review the structural biology efforts within this field and highlight the role of integrative structural biology approaches that have proved successful for some of these systems. Finally, we summarize the structural elements of major tail proteins and conceptualize how different amounts of tail tube flexibility confer heterogeneity within cryo-EM maps and, thus, limit high-resolution reconstructions.


Assuntos
Bacteriófagos , Proteínas do Capsídeo , Caudovirales , Bacteriófagos/química , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Caudovirales/química , Caudovirales/metabolismo , Microscopia Crioeletrônica , Conformação Proteica , Vírion/metabolismo
7.
Front Physiol ; 12: 792958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950061

RESUMO

Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.

8.
Chem Sci ; 12(38): 12754-12762, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703562

RESUMO

Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast to their soluble counterparts, which are inhibited by many common drugs, and is in part explained by the inherent difficulty to characterize the binding of drug-like molecules to membrane proteins at atomic resolution. Here, we investigated the binding of two different inhibitors to the bacterial rhomboid protease GlpG, an intramembrane protease characterized by a Ser-His catalytic dyad, using solid-state NMR spectroscopy. H/D exchange of deuterated GlpG can reveal the binding position while chemical shift perturbations additionally indicate the allosteric effects of ligand binding. Finally, we determined the exact binding mode of a rhomboid protease-inhibitor using a combination of solid-state NMR and molecular dynamics simulations. We believe this approach can be widely adopted to study the structure and binding of other poorly characterized membrane protein-ligand complexes in a native-like environment and under physiological conditions.

9.
J Mol Biol ; 433(15): 167091, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34090923

RESUMO

Ion conduction is an essential function for electrical activity in all organisms. The non-selective ion channel NaK was previously shown to adopt two stable conformations of the selectivity filter. Here, we present solid-state NMR measurements of NaK demonstrating a population shift between these conformations induced by changing the ions in the sample while the overall structure of NaK is not affected. We show that two K+-selective mutants (NaK2K and NaK2K-Y66F) suffer a complete loss of selectivity filter stability under Na+ conditions, but do not collapse into a defined structure. Widespread chemical shift perturbations are seen between the Na+ and K+ states of the K+-selective mutants in the region of the pore helix indicating structural changes. We conclude that the stronger link between the selectivity filter and the pore helix in the K+-selective mutants, compared to the non-selective wild-type NaK channel, reduces the ion-dependent conformational flexibility of the selectivity filter.


Assuntos
Mutação , Canais de Potássio Ativados por Sódio/química , Canais de Potássio Ativados por Sódio/metabolismo , Sódio/metabolismo , Ligação de Hidrogênio , Imageamento por Ressonância Magnética , Modelos Moleculares , Canais de Potássio Ativados por Sódio/genética , Conformação Proteica , Estabilidade Proteica
10.
IUCrJ ; 8(Pt 3): 421-430, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953928

RESUMO

The sodium potassium ion channel (NaK) is a nonselective ion channel that conducts both sodium and potassium across the cellular membrane. A new crystallographic structure of NaK reveals conformational differences in the residues that make up the selectivity filter between the four subunits that form the ion channel and the inner helix of the ion channel. The crystallographic structure also identifies a side-entry, ion-conduction pathway for Na+ permeation that is unique to NaK. NMR studies and molecular dynamics simulations confirmed the dynamical nature of the top part of the selectivity filter and the inner helix in NaK as also observed in the crystal structure. Taken together, these results indicate that the structural plasticity of the selectivity filter combined with the dynamics of the inner helix of NaK are vital for the efficient conduction of different ions through the non-selective ion channel of NaK.

11.
Eur Biophys J ; 50(2): 159-172, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33782728

RESUMO

The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the ß-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.


Assuntos
Ativação do Canal Iônico , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Simulação de Dinâmica Molecular
12.
Nat Commun ; 11(1): 5759, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188213

RESUMO

Bacteriophage SPP1 is a double-stranded DNA virus of the Siphoviridae family that infects the bacterium Bacillus subtilis. This family of phages features a long, flexible, non-contractile tail that has been difficult to characterize structurally. Here, we present the atomic structure of the tail tube of phage SPP1. Our hybrid structure is based on the integration of structural restraints from solid-state nuclear magnetic resonance (NMR) and a density map from cryo-EM. We show that the tail tube protein gp17.1 organizes into hexameric rings that are stacked by flexible linker domains and, thus, form a hollow flexible tube with a negatively charged lumen suitable for the transport of DNA. Additionally, we assess the dynamics of the system by combining relaxation measurements with variances in density maps.


Assuntos
Siphoviridae/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína , Siphoviridae/ultraestrutura , Termodinâmica , Proteínas Virais/química , Proteínas Virais/ultraestrutura
13.
Biochim Biophys Acta Biomembr ; 1862(2): 183114, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666178

RESUMO

Energy-coupling factor (ECF) transporters for uptake of vitamins and transition-metal ions into prokaryotic cells share a common architecture consisting of a substrate-specific integral membrane protein (S), a transmembrane coupling protein (T) and two cytoplasmic ATP-binding-cassette-family ATPases. S components rotate within the membrane to expose their binding pockets alternately to the exterior and the cytoplasm. In contrast to vitamin transporters, metal-specific systems rely on additional proteins with essential but poorly understood functions. CbiN, a membrane protein composed of two transmembrane helices tethered by an extracytoplasmic loop of 37 amino-acid residues represents the auxiliary component that temporarily interacts with the CbiMQO2 Co2+ transporter. CbiN was previously shown to induce significant Co2+ transport activity in the absence of CbiQO2 in cells producing the S component CbiM plus CbiN or a Cbi(MN) fusion. Here we analyzed the mode of interaction between the two protein domains. Any deletion in the CbiN loop abolished transport activity. In silico predicted protein-protein contacts between segments of the CbiN loop and loops in CbiM were confirmed by cysteine-scanning mutagenesis and crosslinking. Likewise, an ordered structure of the CbiN loop was observed by electron paramagnetic resonance analysis after site-directed spin labeling. The N-terminal loop of CbiM containing three of four metal ligands was partially immobilized in wild-type Cbi(MN) but completely immobile in inactive variants with CbiN loop deletions. Decreased dynamics of the inactive form was also detected by solid-state nuclear magnetic resonance of isotope-labeled protein in proteoliposomes. In conclusion, CbiM-CbiN loop-loop interactions facilitate metal insertion into the binding pocket.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Ligação Proteica
14.
Magn Reson Chem ; 58(5): 445-465, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31691361

RESUMO

Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Estrutura Terciária de Proteína
15.
J Am Chem Soc ; 141(43): 17314-17321, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31603315

RESUMO

Rhomboid proteases are intramembrane proteases that hydrolyze substrate peptide bonds within the lipid bilayer and are important for a wide range of biological processes. The bacterial intramembrane protease GlpG is one of the model systems for structural investigations of the rhomboid family. Two different models of substrate gating have been proposed, based on crystal structures of GlpG in detergent micelles. Here, we present a detailed investigation of enzymatically active GlpG in a native-like lipid environment using solid-state NMR spectroscopy. Proton-detected experiments confirm the presence of water molecules in the catalytic cavity. A secondary chemical shift analysis indicates a previously unobserved kink in the central part of the gating helix TM5. Dynamics measurements revealed a dynamic hotspot of GlpG at the N-terminal part of TM5 and the adjacent loop L4, indicating that this region is important for gating. In addition, relaxation dispersion experiments suggest that TM5 is in conformational exchange between an open and a closed conformation.


Assuntos
Proteínas de Ligação a DNA/química , Endopeptidases/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Água/química
16.
Sci Adv ; 5(7): eaaw6756, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31392272

RESUMO

Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism.


Assuntos
Ativação do Canal Iônico , Canais de Potássio/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Permeabilidade da Membrana Celular , Difusão , Canais de Potássio/química
17.
J Biomol NMR ; 73(6-7): 281-291, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028572

RESUMO

Uropathogenic Escherichia coli invades and colonizes hosts by attaching to cells using adhesive pili on the bacterial surface. Although many biophysical techniques have been used to study the structure and mechanical properties of pili, many important details are still unknown. Here we use proton-detected solid-state NMR experiments to investigate solvent accessibility and structural dynamics. Deuterium back-exchange at labile sites of the perdeuterated, fully proton back-exchanged pili was conducted to investigate hydrogen/deuterium (H/D) exchange patterns of backbone amide protons in pre-assembled pili. We found distinct H/D exchange patterns in lateral and axial intermolecular interfaces in pili. Amide protons protected from H/D exchange in pili are mainly located in the core region of the monomeric subunit and in the lateral intermolecular interface, whereas the axial intermolecular interface and the exterior region of pili are highly exposed to H/D exchange. Additionally, we performed molecular dynamics simulations of the type 1 pilus rod and estimated the probability of H/D exchange based on hydrogen bond dynamics. The comparison of the experimental observables and simulation data provides insights into stability and mechanical properties of pili.


Assuntos
Deutério/química , Proteínas de Fímbrias/química , Hidrogênio/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Prótons , Algoritmos , Conformação Proteica
18.
J Struct Biol ; 206(1): 43-48, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678776

RESUMO

Intra-neuronal aggregation of α-synuclein into fibrils is the molecular basis for α-synucleinopathies, such as Parkinson's disease. The atomic structure of human α-synuclein (hAS) fibrils was recently determined by Tuttle et al. using solid-state NMR (ssNMR). The previous study found that hAS fibrils are composed of a single protofilament. Here, we have investigated the structure of mouse α-synuclein (mAS) fibrils by STEM and isotope-dilution ssNMR experiments. We found that in contrast to hAS, mAS fibrils consist of two or even three protofilaments which are connected by rather weak interactions in between them. Although the number of protofilaments appears to be different between hAS and mAS, we found that they have a remarkably similar secondary structure and protofilament 3D structure as judged by secondary chemical shifts and intra-molecular distance restraints. We conclude that the two mutant sites between hAS and mAS (positions 53 and 87) in the fibril core region are crucial for determining the quaternary structure of α-synuclein fibrils.


Assuntos
Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Conformação Molecular , alfa-Sinucleína/química , Amiloide/genética , Amiloide/metabolismo , Animais , Sítios de Ligação/genética , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Camundongos , Modelos Moleculares , Mutação , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Estrutura Secundária de Proteína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Prog Nucl Magn Reson Spectrosc ; 109: 51-78, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30527136

RESUMO

In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.


Assuntos
Marcação por Isótopo/métodos , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Animais , Humanos
20.
Chemphyschem ; 19(19): 2457-2460, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29917302

RESUMO

Proton detection and fast magic-angle spinning have advanced biological solid-state NMR, allowing for the backbone assignment of complex protein assemblies with high sensitivity and resolution. However, so far no method has been proposed to detect intermolecular interfaces in these assemblies by proton detection. Herein, we introduce a concept based on methyl labeling that allows for the assignment of these moieties and for the study of protein-protein interfaces at atomic resolution.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Sequência de Aminoácidos , Glicoproteínas/química , Isoleucina/química , Estrutura Terciária de Proteína , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...