Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 10(1): 23, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28683812

RESUMO

Mechano growth factor (MGF) is a splice variant of IGF-1 first described in skeletal muscle. MGF induces muscle cell proliferation in response to muscle stress and injury. In control mice we found endogenous expression of MGF in neurogenic areas of the brain and these levels declined with age. To better understand the role of MGF in the brain, we used transgenic mice that constitutively overexpressed MGF from birth. MGF overexpression significantly increased the number of BrdU+ proliferative cells in the dentate gyrus (DG) of the hippocampus and subventricular zone (SVG). Although MGF overexpression increased the overall rate of adult hippocampal neurogenesis at the proliferation stage it did not alter the distribution of neurons at post-mitotic maturation stages. We then used the lac-operon system to conditionally overexpress MGF in the mouse brain beginning at 1, 3 and 12 months with histological and behavioral observation at 24 months of age. With conditional overexpression there was an increase of BrdU+ proliferating cells and BrdU+ differentiated mature neurons in the olfactory bulbs at 24 months when overexpression was induced from 1 and 3 months of age but not when started at 12 months. This was associated with preserved olfactory function. In vitro, MGF increased the size and number of neurospheres harvested from SVZ-derived neural stem cells (NSCs). These findings indicate that MGF overexpression increases the number of neural progenitor cells and promotes neurogenesis but does not alter the distribution of adult newborn neurons at post-mitotic stages. Maintaining youthful levels of MGF may be important in reversing age-related neuronal loss and brain dysfunction.


Assuntos
Envelhecimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Neurogênese , Splicing de RNA/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Camundongos Transgênicos , Mitógenos/farmacologia , Mitose/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo
2.
Front Neurol ; 3: 175, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23248613

RESUMO

Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

3.
Antioxid Redox Signal ; 17(11): 1507-14, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22500616

RESUMO

The single methionine (Met/M) residue of amyloid-beta (Aß) peptide, at position 35 of the 42-mer, has important relevance for Aß-induced oxidative stress and neurotoxicity. Recent in vivo brain studies in a transgenic (Tg) Alzheimer disease (AD) mouse model with Swedish and Indiana familial AD mutations in human amyloid precursor protein (APP) (referred to as the J20 Tg mouse) demonstrated increased levels of oxidative stress. However, the substitution of the Met631 residue of APP to leucine (Leu/L) (M631L in human APP numbering, referred to as M631L Tg and corresponding to residue 35 of Aß1-42) resulted in no significant in vivo oxidative stress levels, thereby supporting the hypothesis that Met-35 of Aß contributes to oxidative insult in the AD brain. It is conceivable that oxidative stress mediated by Met-35 of Aß is important in regulating numerous downstream effects, leading to differential levels of relevant biochemical pathways in AD. Therefore, in the current study using proteomics, we tested the hypothesis that several brain proteins involved in pathways such as energy and metabolism, antioxidant activity, proteasome degradation, and pH regulation are altered in J20Tg versus M631L Tg AD mice.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Metionina , Estresse Oxidativo/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica/genética , Humanos , Leucina/genética , Leucina/metabolismo , Metionina/genética , Metionina/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas/metabolismo , Proteômica/métodos
4.
J Alzheimers Dis ; 20(2): 369-93, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20164570

RESUMO

Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Degeneração Neural/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Humanos , Redes e Vias Metabólicas/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia
5.
Biochim Biophys Acta ; 1801(8): 924-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20176130

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder. A number of hypotheses have been proposed to explain AD pathogenesis. One such hypothesis proposed to explain AD pathogenesis is the oxidative stress hypothesis. Increased levels of oxidative stress markers including the markers of lipid peroxidation such as acrolein, 4-hydroxy-2-trans-nonenal (HNE), malondialdehyde, etc. are found in brains of AD subjects. In this review, we focus principally on research conducted in the area of HNE in the central nervous system (CNS) of AD and mild cognitive impairment (MCI), and further, we discuss likely consequences of lipid peroxidation with respect to AD pathogenesis and progression. Based on the research conducted so far in the area of lipid peroxidation, it is suggested that lipid accessible antioxidant molecules could be a promising therapeutic approach to treat or slow progression of MCI and AD.


Assuntos
Aldeídos/farmacologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Peroxidação de Lipídeos/fisiologia , Aldeídos/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Progressão da Doença , Humanos , Modelos Biológicos , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Processamento de Proteína Pós-Traducional/fisiologia
6.
Neurobiol Dis ; 38(1): 104-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20083199

RESUMO

Using APP(NLh)/APP(NLh) x PS-1(P246L)/PS-1(P246L) human double knock-in (APP/PS-1) mice, we examined whether phosphatidylserine (PtdSer) asymmetry is significantly altered in brain of this familial Alzheimer disease mouse model in an age-dependent manner as a result of oxidative stress, toxic Abeta(1-42) oligomer production, and/or apoptosis. Annexin V (AV) and NBD-PS fluorescence in synaptosomes of wild-type (WT) and APP/PS-1 mice were used to determine PtdSer exposure with age, while Mg(2+) ATPase activity was determined to correlate PtdSer asymmetry changes with PtdSer translocase, flippase, activity. AV and NBD-PS results demonstrated significant PtdSer exposure beginning at 9 months compared to 1-month-old WT controls for both assays, a trend that was exacerbated in synaptosomes of APP/PS-1 mice. Decreasing Mg(2+) ATPase activity confirms that the age-related loss of PtdSer asymmetry is likely due to loss of flippase activity, more prominent in APP/PS-1 brain. Two-site sandwich ELISA on SDS- and FA-soluble APP/PS-1 brain fractions were conducted to correlate Abeta(1-40) and Abeta(1-42) levels with age-related trends determined from the AV, NBD-PS, and Mg(2+) ATPase assays. ELISA revealed a significant increase in both SDS- and FA-soluble Abeta(1-40) and Abeta(1-42) with age, consistent with PtdSer and flippase assay trends. Lastly, because PtdSer exposure is affected by pro-apoptotic caspase-3, levels of both latent and active forms were measured. Western blotting results demonstrated an increase in both active fragments of caspase-3 with age, while levels of pro-caspase-3 decrease. These results are discussed with relevance to loss of lipid asymmetry and consequent neurotoxicity in brain of subjects with Alzheimer disease.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Degeneração Neural/metabolismo , Fosfolipídeos/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Animais , Anexina A5/metabolismo , Apoptose/genética , Encéfalo/patologia , Encéfalo/fisiopatologia , Química Encefálica/genética , Caspase 3/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Estresse Oxidativo/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/química , Presenilina-1/genética , Sinaptossomos/metabolismo
7.
Free Radic Biol Med ; 48(1): 136-44, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19854267

RESUMO

Numerous studies have demonstrated oxidative damage in the central nervous system in subjects with Alzheimer disease and in animal models of this dementing disorder. In this study, we show that transgenic mice modeling Alzheimer disease-PDAPP mice with Swedish and Indiana mutations in the human amyloid precursor protein (APP)-develop oxidative damage in brain, including elevated levels of protein oxidation (indexed by protein carbonyls and 3-nitrotyrosine) and lipid peroxidation (indexed by protein-bound 4-hydroxy-2-nonenal). This oxidative damage requires the presence of a single methionine residue at position 35 of the amyloid beta-peptide (Abeta), because all indices of oxidative damage in brain were completely prevented in genetically and age-matched PDAPP mice with an M631L mutation in APP. No significant differences in the levels of APP, Abeta(1-42), and Abeta(1-40) or in the ratio Abeta(1-42)/Abeta(1-40) were found, suggesting that the loss of oxidative stress in vivo in the brain of PDAPP(M631L) mice results solely from the mutation of the Met35 residue to Leu in the Abeta peptide. However, a marked reduction in Abeta-immunoreactive plaques was observed in the M631L mice, which instead displayed small punctate areas of nonplaque immunoreactivity and a microglial response. In contrast to the requirement for Met at residue 35 of the Abeta sequence (M631 of APP) for oxidative damage, indices of spatial learning and memory were not significantly improved by the M631L substitution. Furthermore, a genetically matched line with a different mutation-PDAPP(D664A)-showed the reverse: no reduction in oxidative damage but marked improvement in memory. This is the first in vivo study to demonstrate the requirement for Abeta residue Met35 for oxidative stress in the brain of a mammalian model of Alzheimer disease. However, in this specific transgenic mouse model of AD, oxidative stress is neither required nor sufficient for memory abnormalities.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Metionina/metabolismo , Estresse Oxidativo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
J Neurochem ; 111(4): 915-33, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19780894

RESUMO

Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/enzimologia , Glucose/metabolismo , Fosfopiruvato Hidratase/metabolismo , Animais , Encéfalo/fisiopatologia , Glicólise/fisiologia , Humanos , Modelos Biológicos , Plasminogênio/metabolismo
9.
Neurobiol Dis ; 29(3): 456-64, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18077176

RESUMO

Oxidative stress, a hallmark of Alzheimer disease (AD), has been shown to induce lipid peroxidation and apoptosis disrupting cellular homeostasis. Normally, the aminophospholipid phosphatidylserine (PtdSer) is asymmetrically distributed on the cytosolic leaflet of the lipid bilayer. Under oxidative stress conditions, asymmetry is altered, characterized by the appearance of PtdSer on the outer leaflet, to initiate the first stages of an apoptotic process. PtdSer asymmetry is actively maintained by the ATP-dependent translocase flippase, whose function is inhibited if covalently bound by lipid peroxidation products, 4-hydroxynonenal (HNE) and acrolein, within the membrane bilayer in which they are produced. Additionally, pro-apoptotic proteins Bax and caspase-3 have been implemented in the oxidative modification of PtdSer resulting in subsequent asymmetric collapse, while anti-apoptotic protein Bcl-2 has been found to prevent this process. The current investigation focused on detection of PtdSer on the outer leaflet of the bilayer in synaptosomes from brain of subjects with AD and amnestic mild cognitive impairment (MCI), as well as expression levels of apoptosis-related proteins Bcl-2, Bax, and caspase-3. Fluorescence and Western blot analysis suggest PtdSer exposure on the outer leaflet is significantly increased in brain from subjects with MCI and AD contributing to early apoptotic elevation of pro- and anti-apoptotic proteins and finally neuronal loss. MCI is considered a possible transition point between normal cognitive aging and probable AD. Brain from subjects with MCI is reported to have increased levels of tissue oxidation; therefore, the results of this study could mark the progression of patients with MCI into AD. This study contributes to a model of apoptosis-specific oxidation of phospholipids consistent with the notion that PtdSer exposure is required for apoptotic-cell death.


Assuntos
Doença de Alzheimer/metabolismo , Amnésia/metabolismo , Apoptose/fisiologia , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Fosfolipídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amnésia/genética , Amnésia/patologia , Animais , Encéfalo/patologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA