Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977901

RESUMO

Branched ubiquitin (Ub) chains constitute a sizable fraction of Ub polymers in human cells. Despite their abundance, our understanding of branched Ub function in cell signaling has been stunted by the absence of accessible methods and tools. Here we identify cellular branched-chain-specific binding proteins and devise approaches to probe K48-K63-branched Ub function. We establish a method to monitor cleavage of linkages within complex Ub chains and unveil ATXN3 and MINDY as debranching enzymes. We engineer a K48-K63 branch-specific nanobody and reveal the molecular basis of its specificity in crystal structures of nanobody-branched Ub chain complexes. Using this nanobody, we detect increased K48-K63-Ub branching following valosin-containing protein (VCP)/p97 inhibition and after DNA damage. Together with our discovery that multiple VCP/p97-associated proteins bind to or debranch K48-K63-linked Ub, these results suggest a function for K48-K63-branched chains in VCP/p97-related processes.

2.
Sci Adv ; 10(23): eadn7191, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848361

RESUMO

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson's disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Quinases , Saccharomyces cerevisiae , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Ligação Proteica , Ativação Enzimática , Modelos Moleculares , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
4.
Nat Struct Mol Biol ; 31(2): 351-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182926

RESUMO

UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Catálise , Ubiquitinação , Proteínas de Ligação a Calmodulina/metabolismo
5.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37188479

RESUMO

The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.


Assuntos
Reparo do DNA , Osteocondrodisplasias , Humanos , Mutação/genética , Quinase 1 Relacionada a NIMA/genética , Osteocondrodisplasias/genética , Fosforilação
6.
Cell Rep ; 40(5): 111168, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926457

RESUMO

An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.


Assuntos
Peptídeo Hidrolases , Processamento de Proteína Pós-Traducional , Humanos , Cisteína Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Especificidade por Substrato
7.
Biochem J ; 479(17): 1759-1783, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35950872

RESUMO

Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Microtúbulos/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Ligação Proteica
8.
Methods Enzymol ; 667: 101-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525539

RESUMO

Pseudokinases are emerging as critical components of cell signaling pathways. Consequently, the ability to obtain large quantities of pure protein for structural characterization and drug discovery efforts has become essential for the study of these proteins. Small molecules binding to pseudokinases may induce allosteric changes and serve as valuable tools to study the physiological roles of these "dead" enzymes. The IRAK family of kinases are key components of the innate immune response and the active IRAK family members, IRAK-1 and -4, have been extensively studied. However, the other two IRAKs, IRAK-2 and IRAK-3, are classified as pseudokinases and their detailed functions and roles remain to be described. In this chapter, we present comprehensive protocols for the purification of IRAKs, the crystallization of the pseudokinase domain of IRAK3, and a high-throughput drug screening pipeline using thermal shift and biolayer-interferometry assays to identify small molecule binders.


Assuntos
Imunidade Inata , Transdução de Sinais , Cristalização , Avaliação Pré-Clínica de Medicamentos
9.
Mol Cell ; 82(1): 15-29, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34813758

RESUMO

Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Enzimas Desubiquitinantes , Inibidores Enzimáticos/uso terapêutico , SARS-CoV-2 , Ubiquitinação/efeitos dos fármacos , COVID-19/enzimologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Humanos
10.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34529927

RESUMO

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia , Enzimas Desubiquitinantes/genética , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Ubiquitina Tiolesterase/genética , Ubiquitinação
11.
PLoS One ; 16(7): e0253364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270554

RESUMO

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Assuntos
Antivirais/farmacologia , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Complexo Antígeno-Anticorpo , Humanos , Concentração Inibidora 50 , RNA Polimerase Dependente de RNA/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Anticorpos de Cadeia Única/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
12.
Nat Chem Biol ; 17(8): 843-844, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239126
13.
Structure ; 29(3): 238-251.e4, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33238146

RESUMO

Interleukin-1 receptor associated kinases (IRAKs) are key players in innate immune signaling that mediate the host response to pathogens. In contrast to the active kinases IRAK1 and IRAK4, IRAK2 and IRAK3 are pseudokinases lacking catalytic activity and their functions are poorly understood. IRAK3 is thought to be a negative regulator of innate immune signaling and mutations in IRAK3 are associated with asthma and cancer. Here, we report the crystal structure of the human IRAK3 pseudokinase domain in a closed, pseudoactive conformation. IRAK3 dimerizes in a unique way through a head-to-head arrangement not observed in any other kinases. Multiple conserved cysteine residues imply a potential redox control of IRAK3 conformation and dimerization. By analyzing asthma-associated mutations, we identify an evolutionarily conserved surface on IRAK3 that could form an interaction interface with IRAK4, suggesting a model for the negative regulation of IRAK4 by IRAK3.


Assuntos
Sítio Alostérico , Quinases Associadas a Receptores de Interleucina-1/química , Multimerização Proteica , Regulação Alostérica , Animais , Domínio Catalítico , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Células Sf9 , Spodoptera
14.
J Laparoendosc Adv Surg Tech A ; 29(9): 1168-1173, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31161950

RESUMO

Background: Self-expanding metal stents (SEMSs) in different geometric shapes are well established treatment options in diseases of the esophagus. Mechanical properties and stent design may have an impact on patient comfort, migration rate, and removability. In this in vitro study, we evaluated mechanical properties of three segmented SEMSs (segSEMSs) for the esophagus with regard to distinct stent sections. Materials and Methods: Radial forces were measured using a testing method distinguishing between circumferential radial and local radial force. The center parts of the segSEMSs were measured for circumferential radial forces without being affected by the flared ends. Axial forces were measured at 20° bending. Results: Circumferential radial force measurements over the full stent length showed substantial differences against measurements of the center parts of the stents as the flared ends falsify test results by up to 53%. Although circumferential radial forces of the center parts were about the same (<10% variances) for all segSEMSs, local radial forces showed considerable differences of up to 26%. One segSEMS showed high axial forces, whereas the other two only needed half of the force (up to 53%) to be bent to 20°. Conclusion: Flared ends of segSEMSs have a substantial impact on radial force measurements and therefore alter test results, confirmed by our separated center part test of segSEMSs. Our innovative setup whereby we compressed the stent in an asymmetric manner (local radial force) and evaluated sections of stents separately, indeed revealed differences to circumferential measurements, leading to a more in-depth knowledge of stent characteristics.


Assuntos
Doenças do Esôfago/cirurgia , Esôfago/cirurgia , Teste de Materiais/métodos , Stents Metálicos Autoexpansíveis , Humanos , Fenômenos Mecânicos , Pressão , Desenho de Prótese
15.
Nanoscale Res Lett ; 11(1): 197, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27075339

RESUMO

An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

16.
Structure ; 23(11): 2122-32, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26455799

RESUMO

Cilia are small antenna-like cellular protrusions critical for many developmental signaling pathways. The ciliary protein Arl3 has been shown to act as a specific release factor for myristoylated and farnesylated ciliary cargo molecules by binding to the effectors Unc119 and PDE6δ. Here we describe a newly identified Arl3 binding partner, CCDC104/CFAP36. Biochemical and structural analyses reveal that the protein contains a BART-like domain and is called BARTL1. It recognizes an LLxILxxL motif at the N-terminal amphipathic helix of Arl3, which is crucial for the interaction with the BART-like domain but also for the ciliary localization of Arl3 itself. These results seem to suggest a ciliary role of BARTL1, and possibly link it to the Arl3 transport network. We thus speculate on a regulatory mechanism whereby BARTL1 aids the presentation of active Arl3 to its GTPase-activating protein RP2 or hinders Arl3 membrane binding in the area of the transition zone.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cílios/metabolismo , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteínas
17.
Phys Chem Chem Phys ; 16(48): 26806-15, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25373476

RESUMO

Tetragonal xenotime-type yttrium orthophosphate (YPO4) Nd(3+) doped nanoparticles suitable for biomedical applications were prepared by microwave-hydrothermal treatment. We applied the energy transfer probing based on the analysis of kinetics of impurity quenching to determine the presence and spatial position of -OH fluorescence quenching acceptors in the impurity-containing nanoparticles. We show that the impurity quenching kinetics of the 0.1 at% Nd(3+) doped YPO4 nanoparticles is a two stage (ordered and disordered) static kinetics, determined by a direct energy transfer to the -OH acceptors. Analyzing the ordered stage, we assume that the origin of the -OH groups is the protonation of the phosphate groups, while analyzing the disordered stage, we assume the presence of water molecules in the mesopores. We determine the dimension of the space of the -OH acceptors as d = 3 and quantify their absolute concentration using the disordered Förster stage of kinetics. We use the late stage of kinetics of fluorescence hopping (CDD ≫ CDA) quenching (the fluctuation asymptotics) at 1 at% Nd(3+) concentration as an energy transfer probe to quantify the relative concentration of -OH molecular groups compared to an optically active rare-earth dopant in the volume of NPs, when energy migration over Nd(3+) donors to the -OH acceptors accelerates fluorescence quenching. In doing so we use just one parameter α = γ(A)/γ(D) = n(A)√[C(DA)]/n(D)√[C(DD)], defined by the relation of concentration of the -OH acceptors to the concentration of an optically active dopant. The higher is the α, the higher is the relative concentration of -OH acceptors in the volume of nanoparticles. We find α = 2.95 for the 1 at% Nd(3+):YPO4 NPs that, according to the equation for α, and the results obtained for the values of the microparameters CDD(Nd-Nd) = 24.6 nm(6) ms(-1) and CDA(Nd-OH) = 0.6 nm(6) ms(-1), suggests twenty times higher concentration for acceptors other than donors. As the main result we have established that the majority of -OH acceptors is located not on the surface of the Nd(3+):YPO4 nanoparticles, as many researchers assumed, but in their volume, and can be either associated with crystal structure defects or located in the mesopores.


Assuntos
Nanopartículas/química , Neodímio/química , Fosfatos/química , Ítrio/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula
18.
Beilstein J Nanotechnol ; 5: 1808-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383292

RESUMO

The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol-gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young's modulus values from the nanoindentation data. Finally, the Young's moduli of SiO2 NTs measured by different methods were compared and discussed.

19.
Stem Cells Transl Med ; 3(7): 801-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24855275

RESUMO

We present a method to efficiently culture primary chromaffin progenitors from the adult bovine adrenal medulla in a defined, serum-free monolayer system. Tissue is dissociated and plated for expansion under support by the mitogen basic fibroblast growth factor (bFGF). The cultures, although not homogenous, contain a subpopulation of cells expressing the neural stem cell marker Hes3 that also propagate. In addition, Hes3 is also expressed in the adult adrenal medulla from where the tissue is taken. Differentiation is induced by bFGF withdrawal and switching to Neurobasal medium containing B27. Following differentiation, Hes3 expression is lost, and cells acquire morphologies and biomarker expression patterns of chromaffin cells and dopaminergic neurons. We tested the effect of different treatments that we previously showed regulate Hes3 expression and cell number in cultures of fetal and adult rodent neural stem cells. Treatment of the cultures with a combination of Delta4, Angiopoietin2, and a Janus kinase inhibitor increases cell number during the expansion phase without significantly affecting catecholamine content levels. Treatment with cholera toxin does not significantly affect cell number but reduces the ratio of epinephrine to norepinephrine content and increases the dopamine content relative to total catecholamines. These data suggest that this defined culture system can be used for target identification in drug discovery programs and that the transcription factor Hes3 may serve as a new biomarker of putative adrenomedullary chromaffin progenitor cells.


Assuntos
Medula Suprarrenal/metabolismo , Técnicas de Cultura de Células , Células Cromafins/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Medula Suprarrenal/citologia , Medula Suprarrenal/efeitos dos fármacos , Angiopoietina-2/farmacologia , Animais , Biomarcadores/metabolismo , Catecolaminas/metabolismo , Bovinos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Toxina da Cólera/farmacologia , Células Cromafins/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Proteínas de Membrana/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética
20.
Cell Transplant ; 21(11): 2471-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22507143

RESUMO

The differentiation of dopamine-producing neurons from chromaffin progenitors might represent a new valuable source for replacement therapies in Parkinson's disease. However, characterization of their differentiation potential is an important prerequisite for efficient engraftment. Based on our previous studies on isolation and characterization of chromaffin progenitors from adult adrenals, this study investigates their potential to produce dopaminergic neurons and means to enhance their dopaminergic differentiation. Chromaffin progenitors grown in sphere culture showed an increased expression of nestin and Mash1, indicating an increase of the progenitor subset. Proneurogenic culture conditions induced the differentiation into neurons positive for neural markers ß-III-tubulin, MAP2, and TH accompanied by a decrease of Mash1 and nestin. Furthermore, Notch2 expression decreased concomitantly with a downregulation of downstream effectors Hes1 and Hes5 responsible for self-renewal and proliferation maintenance of progenitor cells. Chromaffin progenitor-derived neurons secreted dopamine upon stimulation by potassium. Strikingly, treatment of differentiating cells with retinoic and ascorbic acid resulted in a twofold increase of dopamine secretion while norepinephrine and epinephrine were decreased. Initiation of dopamine synthesis and neural maturation is controlled by Pitx3 and Nurr1. Both Pitx3 and Nurr1 were identified in differentiating chromaffin progenitors. Along with the gained dopaminergic function, electrophysiology revealed features of mature neurons, such as sodium channels and the capability to fire multiple action potentials. In summary, this study elucidates the capacity of chromaffin progenitor cells to generate functional dopaminergic neurons, indicating their potential use in cell replacement therapies.


Assuntos
Células Cromafins/citologia , Neurônios Dopaminérgicos/citologia , Células-Tronco/citologia , Animais , Bovinos , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Células Cromafins/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco/metabolismo , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA