Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; : e14167, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779820

RESUMO

AIM: To investigate systemic regulators of the cancer-associated cachexia syndrome (CACS) in a pre-clinical model for lung cancer with the goal to identify therapeutic targets for tissue wasting. METHODS: Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. RESULTS: Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. CONCLUSION: Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.

2.
Nat Rev Endocrinol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760482

RESUMO

Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.

3.
Cells ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334647

RESUMO

Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.


Assuntos
Músculo Esquelético , Recuperação após o Exercício , Humanos , Idoso , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Inflamação
4.
Am J Physiol Endocrinol Metab ; 325(5): E500-E512, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672249

RESUMO

The ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway are the primary means of degradation in mammalian tissues. We sought to determine the individual contribution of the UPS and autophagy to tissue catabolism during fasting. Mice were overnight fasted for 15 h before regaining food access ("Fed" group, n = 6) or continuing to fast ("Fast" group, n = 7) for 3 h. In addition, to investigate the effects of autophagy on systemic metabolism and tissue degradation, one group of mice was fasted for 18 h and treated with chloroquine ("Fast + CLQ" group, n = 7) and a fourth group of mice was treated with bortezomib ("Fast + Bort" group, n = 7) to assess the contribution of the UPS. Body weight, tissue weight, circulating hormones and metabolites, intracellular signaling pathways, and protein synthesis were investigated. Fasting induced the loss of body weight, liver mass, and white adipose tissue in the Fast and the Fast + CLQ group, whereas the Fast + Bort group maintained tissue and body weight. Fasting reduced glucose and increased ß hydroxybutyrate in the circulation of all mice. Both changes were most profound in the Fast + Bort group compared with the other fasting conditions. Molecular signaling indicated a successful inhibition of hepatic UPS with bortezomib and an upregulation of the PI3K/AKT/mTOR pathway. The latter was further supported by an increase in hepatic protein synthesis with bortezomib. Inhibition of the UPS through bortezomib blocks body weight loss and tissue catabolism during an acute overnight fast in mice. The effects were likely mediated through a combined effect of the drug on biomolecule degradation and synthesis.NEW & NOTEWORTHY Bortezomib treatment prevents tissue and body weight loss during fasting. The loss of proteasome activity with bortezomib exacerbates fasting-induced ketogenesis. During fasting, bortezomib increases AMPK and PI3K/AKT signaling in the liver, which promotes protein synthesis.


Assuntos
Fosfatidilinositol 3-Quinases , Complexo de Endopeptidases do Proteassoma , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Bortezomib/farmacologia , Proteólise , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina/metabolismo , Ubiquitina/farmacologia , Jejum/metabolismo , Nutrientes , Redução de Peso , Peso Corporal , Autofagia , Mamíferos/metabolismo
5.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577571

RESUMO

The cancer associated cachexia syndrome (CACS) is a systemic metabolic disorder resulting in loss of body weight due to skeletal muscle and adipose tissues atrophy. CACS is particularly prominent in lung cancer patients, where it contributes to poor quality of life and excess mortality. Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.

6.
NMR Biomed ; 36(11): e4996, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434581

RESUMO

PURPOSE: Implement STEAM-DTI to model time-dependent diffusion eigenvalues using the random permeable barrier model (RPBM) to study age-related differences in the medial gastrocnemius (MG) muscle. Validate diffusion model-extracted fiber diameter for histological assessment. METHODS: Diffusion imaging at different diffusion times (Δ) was performed on seven young and six senior participants. Time-dependent diffusion eigenvalues (λ2 (t), λ3 (t), and D⊥ (t); average of λ2 (t) and λ3 (t)) were fit to the RPBM to extract tissue microstructure parameters. Biopsy of the MG tissue for histological assessment was performed on a subset of participants (four young, six senior). RESULTS: λ3 (t) was significantly higher in the senior cohort for the range of diffusion times. RPBM fits to λ2 (t) yielded fiber diameters in agreement to those from histology for both cohorts. The senior cohort had lower values of volume fraction of membranes, ζ, in fits to λ2 (t), λ3 (t), and D⊥ (t) (significant for fit to λ3 (t)). Fits of fiber diameter from RPBM to that from histology had the highest correlation for the fit to λ2 (t). CONCLUSION: The age-related patterns in λ2 (t) and λ3 (t) could tentatively be explained from RPBM fits; these patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability with age.

8.
Cell Death Dis ; 13(8): 716, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977948

RESUMO

The tumor suppressor p53 is thought to play a key role in the maintenance of cell size and homeostasis, but relatively little is known about its role in skeletal muscle. Based on its ability to suppress cell growth, we hypothesized that inhibiting the function of wild-type p53 through the overexpression of a dominant-negative p53 mutant (DDp53) could result in muscle fiber hypertrophy. To test this hypothesis, we electroporated adult rat tibialis anterior muscles with DDp53 and collected the tissue three weeks later. We confirmed successful overexpression of DDp53 on a histological and biochemical level and found pronounced changes to muscle architecture, metabolism, and molecular signaling. Muscle mass, fiber cross-sectional area, and fiber diameter significantly decreased with DDp53 overexpression. We found histopathological changes in DDp53 transfected muscle which were accompanied by increased levels of proteins that are associated with membrane damage and repair. In addition, DDp53 decreased oxidative phosphorylation complex I and V protein levels, and despite its negative effects on muscle mass and fiber size, caused an increase in muscle protein synthesis as assessed via the SUnSET technique. Interestingly, the increase in muscle protein synthesis was concomitant with a decrease in phospho-S6K1 (Thr389). Furthermore, the muscle wasting in the DDp53 electroporated leg was accompanied by a decrease in global protein ubiquitination and an increase in proteasome activity. In conclusion, overexpression of a dominant-negative p53 mutant in skeletal muscle results in decreased muscle mass, myofiber size, histological muscle damage, a metabolic phenotype, and perturbed homeostasis between muscle protein synthesis and degradation.


Assuntos
Músculo Esquelético , Proteína Supressora de Tumor p53 , Animais , Atrofia , Morte Celular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Ratos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Front Oncol ; 12: 903157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719965

RESUMO

Cachexia is a debilitating comorbidity affecting many lung cancer patients. We have previously found that cachectic mice with lung cancer have reduced serum ketone body levels due to low PPARα activity in the liver. Restoring hepatic PPARα activity with fenofibrate increased circulating ketones and delayed muscle and white adipose tissue wasting. We hypothesized that the loss of circulating ketones plays a pathophysiologic role in cachexia and performed two dietary intervention studies to test this hypothesis. In the first study, male and female mice were randomized to consume either a very low carbohydrate, ketogenic diet (KD) or normal chow (NC) after undergoing tumor induction. The KD successfully restored serum ketone levels and decreased blood glucose in cachectic mice but did not improve body weight maintenance or survival. In fact, there was a trend for the KD to worsen survival in male but not in female mice. In the second study, we compounded a ketone ester supplement into the NC diet (KE) and randomized tumor-bearing mice to KE or NC after tumor induction. We confirmed that KE was able to acutely and chronically increase ketone body abundance in the serum compared to NC. However, the restoration of ketones in the circulation was not able to improve body weight maintenance or survival in male or female mice with lung cancer. Finally, we investigated PPARα activity in the liver of mice fed KE and NC and found that animals fed a ketone ester supplement showed a significant increase in mRNA expression of several PPARα targets. These data negate our initial hypothesis and suggest that restoring ketone body availability in the circulation of mice with lung cancer does not alter cachexia development or improve survival, despite increasing hepatic PPARα activity.

10.
Sci Rep ; 12(1): 7553, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534615

RESUMO

The molecular responses to acute resistance exercise are well characterized. However, how cellular signals change over time to modulate chronic adaptations to more prolonged exercise training is less well understood. We investigated anabolic signaling and muscle protein synthesis rates at several time points after acute and chronic eccentric loading. Adult rat tibialis anterior muscle was stimulated for six sets of ten repetitions, and the muscle was collected at 0 h, 6 h, 18 h and 48 h. In the last group of animals, 48 h after the first exercise bout a second bout was conducted, and the muscle was collected 6 h later (54 h total). In a second experiment, rats were exposed to four exercise sessions over the course of 2 weeks. Anabolic signaling increased robustly 6 h after the first bout returning to baseline between 18 and 48 h. Interestingly, 6 h after the second bout mTORC1 activity was significantly lower than following the first bout. In the chronically exercised rats, we found baseline anabolic signaling was decreased, whereas myofibrillar protein synthesis (MPS) was substantially increased, 48 h after the last bout of exercise. The increase in MPS occurred in the absence of changes to muscle fiber size or mass. In conclusion, we find that anabolic signaling is already diminished after the second bout of acute resistance type exercise. Further, chronic exposure to resistance type exercise training results in decreased basal anabolic signaling but increased overall MPS rates.


Assuntos
Músculo Esquelético , Treinamento Resistido , Animais , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ratos , Transdução de Sinais
11.
Cannabis Cannabinoid Res ; 7(5): 628-636, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762497

RESUMO

Background: Cannabidiol (CBD) is becoming increasingly popular for the treatment of clinical conditions including as an aid for muscle recovery. Previous work demonstrated that CBD exhibited mild effects on skeletal muscle, with a tendency to increase anabolic signaling and decrease inflammatory signaling. Methods: To gain mechanistic insight and extend these findings, we conducted a set of experiments using C2C12 myotubes. Results: Increasing the dose of CBD (1-5 µM) provided with insulin-like growth factor 1 (IGF-1) showed no effect on anabolic signaling through mTORC1 (S6K1 [Thr389], p=0.27; rpS6 [Ser240/244], p=0.81; or 4E-BP1 [Thr37/46], p=0.87). Similarly, inflammatory signaling through nuclear factor kappa B (NF-κB) (p105, p=0.88; p50, p=0.93; or phosphorylated p65 [Ser536], p=0.84) in response to tumor necrosis factor α (TNFα) was unaffected by CBD (2.5 µM), whereas dioscin, a natural product that blocks NF-κB signaling, reduced p105 and phosphorylated p65 (Ser536) compared with the TNFα and the TNFα + CBD condition (p<0.01 and p<0.05, respectively). Finally, cannabinoid receptor type 1 (CB1) receptor levels were measured in C2C12 cells, murine skeletal muscle, cortex, and hippocampus. Although CB1 was not detectable in muscle cells or muscle tissue, high levels were observed in brain tissue. Conclusion: In conclusion, CBD does not directly modulate anabolic or inflammatory signaling in myotubes in vitro, which can likely be explained by the lack of functional receptors.


Assuntos
Produtos Biológicos , Canabidiol , Camundongos , Animais , Canabidiol/farmacologia , NF-kappa B/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Músculo Esquelético/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Produtos Biológicos/metabolismo , Receptores de Canabinoides/metabolismo
12.
J Orthop Res ; 40(4): 878-890, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34081357

RESUMO

Fracture induces systemic bone loss in mice and humans, and a first (index) fracture increases the risk of future fracture at any skeletal site more in men than women. The etiology of this sex difference is unknown, but fracture may induces a greater systemic bone loss response in men. Also sex differences in systemic muscle loss after fracture have not been examined. We investigated sex differences in systemic bone and muscle loss after transverse femur fracture in 3-month-old male and female C57BL/6 J mice. Whole-body and regional bone mineral content and density (BMC and BMD), trabecular and cortical bone microstructure, muscle contractile force, muscle mass, and muscle fiber size were quantified at multiple time points postfracture. Serum concentrations of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) were measured 1-day postfracture. One day postfracture, IL-6 and Il-1B were elevated in fracture mice of both sexes, but TNF-α was only elevated in male fracture mice. Fracture reduced BMC, BMD, and trabecular bone microstructural properties in both sexes 2 weeks postfracture, but declines were greater in males. Muscle contractile force, mass, and fiber size decreased primarily in the fractured limb at 2 weeks postfracture and females showed a trend toward greater muscle loss. Bone and muscle properties recovered by 6 weeks postfracture. Overall, postfracture systemic bone loss is greater in men, which may contribute to sex differences in subsequent fracture risk. In both sexes, muscle loss is primarily confined to the injured limb and fracture may induce greater inflammation in males.


Assuntos
Doenças Ósseas Metabólicas , Fraturas do Fêmur , Caracteres Sexuais , Animais , Densidade Óssea , Feminino , Fraturas do Fêmur/complicações , Fêmur/metabolismo , Fêmur/patologia , Interleucina-1beta , Interleucina-6 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Músculos/patologia , Fator de Necrose Tumoral alfa
13.
FASEB J ; 35(9): e21860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411340

RESUMO

Desminopathy is the most common intermediate filament disease in humans. The most frequent mutation causing desminopathy in patients is a R350P DES missense mutation. We have developed a rat model with an analogous mutation in R349P Des. To investigate the role of R349P Des in mechanical loading, we stimulated the sciatic nerve of wild-type littermates (WT) (n = 6) and animals carrying the mutation (MUT) (n = 6) causing a lengthening contraction of the dorsi flexor muscles. MUT animals showed signs of ongoing regeneration at baseline as indicated by a higher number of central nuclei (genotype: P < .0001). While stimulation did not impact central nuclei, we found an increased number of IgG positive fibers (membrane damage indicator) after eccentric contractions with both genotypes (stimulation: P < .01). Interestingly, WT animals displayed a more pronounced increase in IgG positive fibers with stimulation compared to MUT (interaction: P < .05). In addition to altered histology, molecular signaling on the protein level differed between WT and MUT. The membrane repair protein dysferlin decreased with eccentric loading in WT but increased in MUT (interaction: P < .05). The autophagic substrate p62 was increased in both genotypes with loading (stimulation: P < .05) but tended to be more elevated in WT (interaction: P = .05). Caspase 3 levels, a central regulator of apoptotic cell death, was increased with stimulation in both genotypes (stimulation: P < .01) but more so in WT animals (interaction: P < .0001). Overall, our data indicate that R349P Des rats have a lower susceptibility to structural muscle damage of the cytoskeleton and sarcolemma with acute eccentric loading.


Assuntos
Desmina/genética , Contração Muscular , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Mutação , Doença Aguda , Animais , Apoptose , Doença Crônica , Colágeno/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Ratos , Risco
14.
Int J Sport Nutr Exerc Metab ; 31(2): 93-100, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621949

RESUMO

Cannabidiol (CBD) has proven clinical benefits in the treatment of seizures, inflammation, and pain. The recent legalization of CBD in many countries has caused increased interest in the drug as an over-the-counter treatment for athletes looking to improve recovery. However, no data on the effects of CBD on the adaptive response to exercise in muscle are available. To address this gap, we eccentrically loaded the tibialis anterior muscle of 14 rats, injected them with a vehicle (n = 7) or 100 mg/kg CBD (n = 7), and measured markers of injury, inflammation, anabolic signaling, and autophagy 18 hr later. Pro-inflammatory signaling through nuclear factor kappa B (NF-kB) (Ser536) increased with loading in both groups; however, the effect was significantly greater (36%) in the vehicle group (p < .05). Simultaneously, anabolic signaling through ribosomal protein S6 kinase beta-1 (S6K1) (Thr389) increased after eccentric contractions in both groups with no difference between vehicle and CBD (p = .66). The ribosomal protein S6 phosphorylation (240/244) increased with stimulation (p < .001) and tended to be higher in the CBD group (p = .09). The ubiquitin-binding protein p62 levels were not modulated by stimulation (p = .6), but they were 46% greater in the CBD compared with the vehicle group (p = .01). Although liver weight did not differ between the groups (p = .99) and levels of proteins associated with stress were similar, we did observe serious side effects in one animal. In conclusion, an acute dose of CBD decreased pro-inflammatory signaling in the tibialis anterior without blunting the anabolic response to exercise in rats. Future research should determine whether these effects translate to improved recovery without altering adaptation in humans.


Assuntos
Canabidiol/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Autofagia , Canabidiol/toxicidade , Estimulação Elétrica , Feminino , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fosforilação , Elementos Estruturais de Proteínas/efeitos dos fármacos , Ratos Sprague-Dawley , Nervo Isquiático , Transdução de Sinais/efeitos dos fármacos , Aumento do Músculo Esquelético/efeitos dos fármacos
15.
J Cachexia Sarcopenia Muscle ; 11(5): 1364-1376, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893996

RESUMO

BACKGROUND: Desminopathy is a clinically heterogeneous muscle disease caused by over 60 different mutations in desmin. The most common mutation with a clinical phenotype in humans is an exchange of arginine to proline at position 350 of desmin leading to p.R350P. We created the first CRISPR-Cas9 engineered rat model for a muscle disease by mirroring the R350P mutation in humans. METHODS: Using CRISPR-Cas9 technology, Des c.1045-1046 (AGG > CCG) was introduced into exon 6 of the rat genome causing p.R349P. The genotype of each animal was confirmed via quantitative PCR. Six male rats with a mutation in desmin (n = 6) between the age of 120-150 days and an equal number of wild type littermates (n = 6) were used for experiments. Maximal plantar flexion force was measured in vivo and combined with the collection of muscle weights, immunoblotting, and histological analysis. In addition to the baseline phenotyping, we performed a synergist ablation study in the same animals. RESULTS: We found a difference in the number of central nuclei between desmin mutants (1 ± 0.4%) and wild type littermates (0.2 ± 0.1%; P < 0.05). While muscle weights did not differ, we found the levels of many structural proteins to be altered in mutant animals. Dystrophin and syntrophin were increased 54% and 45% in desmin mutants, respectively (P < 0.05). Dysferlin and Annexin A2, proteins associated with membrane repair, were increased two-fold and 32%, respectively, in mutants (P < 0.05). Synergist ablation caused similar increases in muscle weight between mutant and wild type animals, but changes in fibre diameter revealed that fibre hypertrophy in desmin mutants was hampered compared with wild type animals (P < 0.05). CONCLUSIONS: We created a novel animal model for desminopathy that will be a useful tool in furthering our understanding of the disease. While mutant animals at an age corresponding to a preclinical age in humans show no macroscopic differences, microscopic and molecular changes are already present. Future studies should aim to further decipher those biological changes that precede the clinical progression of disease and test therapeutic approaches to delay disease progression.


Assuntos
Sistemas CRISPR-Cas , Doenças Musculares , Animais , Desmina/genética , Desmina/metabolismo , Distrofina , Masculino , Camundongos , Doenças Musculares/genética , Mutação , Ratos
16.
Physiol Rep ; 8(9): e14429, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32358862

RESUMO

The mechanisms accounting for the loss of muscle function with obesity and type 2 diabetes are likely the result of a combination of neural and muscular factors. One muscular factor that is important, yet has received little attention, is the protein machinery involved in longitudinal and lateral force transmission. The purpose of this study was to compare the levels of force transfer and membrane integrity proteins before and after a 12-week endurance training program in lean, obese, and obese type 2 diabetic adults. Nineteen sedentary subjects (male = 8 and female = 11) were divided into three groups: Lean (n = 7; 50.3 ± 4.1 y; 69.1 ± 7.2 kg); Obese (n = 6; 49.8 ± 4.1 y; 92.9 ± 19.5 kg); and Obese with type 2 diabetes (n = 6; 51.5 ± 7.9 years; 88.9 ± 15.1 kg). Participants trained 150 min/week between 55% and 75% of VO2max for 12 weeks. Skeletal muscle biopsies were taken before and after the training intervention. Baseline dystrophin and muscle LIM protein levels were higher (~50% p < .01) in lean compared to obese and type 2 diabetic adults, while the protein levels of the remaining force transfer and membrane integrity proteins were similar between groups. After training, obese individuals decreased (-53%; p < .01) the levels of the muscle ankyrin repeat protein and lean individuals decreased dystrophin levels (-45%; p = .01), while the levels of the remaining force transfer and membrane integrity proteins were not affected by training. These results suggest that there are modest changes to force transfer and membrane integrity proteins in middle-aged individuals as a result of 12 weeks of lifestyle and training interventions.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Treino Aeróbico/métodos , Terapia por Exercício/métodos , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Magreza/metabolismo , Anquirinas/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Distrofina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Obesidade/patologia , Obesidade/terapia , Magreza/patologia , Magreza/terapia
17.
Sci Rep ; 10(1): 1908, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024865

RESUMO

Perturbations in skeletal muscle metabolism have been reported for a variety of neuromuscular diseases. However, the role of metabolism after constriction injury to a nerve and the associated muscle atrophy is unclear. We have analyzed rat tibialis anterior (TA) four weeks after unilateral constriction injury to the sciatic nerve (DMG) and in the contralateral control leg (CTRL) (n = 7) to investigate changes of the metabolome, immunohistochemistry and protein levels. Untargeted metabolomics identified 79 polar metabolites, 27 of which were significantly altered in DMG compared to CTRL. Glucose concentrations were increased 2.6-fold in DMG, while glucose 6-phosphate (G6-P) was unchanged. Intermediates of the polyol pathway were increased in DMG, particularly fructose (1.7-fold). GLUT4 localization was scattered as opposed to clearly at the sarcolemma. Despite the altered localization, we found GLUT4 protein levels to be increased 7.8-fold while GLUT1 was decreased 1.7-fold in nerve damaged TA. PFK1 and GS levels were both decreased 2.1-fold, indicating an inability of glycolysis and glycogen synthesis to process glucose at sufficient rates. In conclusion, chronic nerve constriction causes increased GLUT4 levels in conjunction with decreased glycolytic activity and glycogen storage in skeletal muscle, resulting in accumulation of intramuscular glucose and polyol pathway intermediates.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Traumatismos dos Nervos Periféricos/complicações , Polímeros/metabolismo , Animais , Modelos Animais de Doenças , Transportador de Glucose Tipo 1/metabolismo , Glicogênio/biossíntese , Glicólise , Humanos , Masculino , Metabolômica , Músculo Esquelético/inervação , Atrofia Muscular/etiologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Nervo Isquiático/lesões
19.
Front Physiol ; 9: 1220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233398

RESUMO

Muscle loss is a severe complication of many medical conditions such as cancer, cardiac failure, muscular dystrophies, and nerve damage. The contribution of myofibrillar protein synthesis (MPS) to the loss of muscle mass after nerve damage is not clear. Using deuterium oxide (D2O) labeling, we demonstrate that MPS is significantly increased in rat m.tibialis anterior (TA) compared to control (3.23 ± 0.72 [damaged] to 2.09 ± 0.26%∗day-1 [control]) after 4 weeks of nerve constriction injury. This is the case despite substantial loss of mass of the TA (350 ± 96 mg [damaged] to 946 ± 361 mg [control]). We also show that expression of regulatory proteins involved with MPS (p70s6k1: 2.4 ± 0.3 AU [damaged] to 1.8 ± 0.2 AU [control]) and muscle protein breakdown (MPB) (MAFbx: 5.3 ± 1.2 AU [damaged] to 1.4 ± 0.4 AU [control]) are increased in nerve damaged muscle. Furthermore, the expression of p70s6k1 correlates with MPS rates (r2 = 0.57). In conclusion, this study shows that severe muscle wasting following nerve damage is accompanied by increased as opposed to decreased MPS.

20.
Med Sci Sports Exerc ; 48(12): 2517-2525, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643743

RESUMO

INTRODUCTION: We have previously shown that protein ingestion before sleep increases overnight muscle protein synthesis rates. Whether prior exercise further augments the muscle protein synthetic response to presleep protein ingestion remains to be established. OBJECTIVE: This study aimed to assess whether resistance-type exercise performed in the evening increases the overnight muscle protein synthetic response to presleep protein ingestion. METHODS: Twenty-four healthy young men were randomly assigned to ingest 30 g intrinsically L-[1-C]-phenylalanine and L-[1-C]-leucine-labeled casein protein before going to sleep with (PRO + EX, n = 12) or without (PRO, n = 12) prior resistance-type exercise performed in the evening. Continuous intravenous L-[ring-H5]-phenylalanine, L-[1-C]-leucine, and L-[ring-H2]-tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole-body protein balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into de novo myofibrillar protein. RESULTS: A total of 57% ± 1% of the ingested protein-derived phenylalanine appeared in the circulation during overnight sleep. Overnight myofibrillar protein synthesis rates were 37% (0.055%·h ± 0.002%·h vs. 0.040%·h ± 0.003%·h, P < 0.001, based on L-[ring- H5]-phenylalanine) and 31% (0.073%·h ± 0.004%·h vs. 0.055%·h ± 0.006%·h, P = 0.024, based on L-[1-C]-leucine) higher in PRO + EX compared with PRO. Substantially more of the dietary protein-derived amino acids were incorporated into de novo myofibrillar protein during overnight sleep in PRO + EX compared with PRO (0.026 ± 0.003 vs. 0.015 ± 0.003 molar percent excess, P = 0.012). CONCLUSIONS: Resistance-type exercise performed in the evening augments the overnight muscle protein synthetic response to presleep protein ingestion and allows more of the ingested protein-derived amino acids to be used for de novo myofibrillar protein synthesis during overnight sleep.


Assuntos
Proteínas Alimentares/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Treinamento Resistido , Sono/fisiologia , Aminoácidos/metabolismo , Glicemia/metabolismo , Caseínas/administração & dosagem , Caseínas/sangue , Humanos , Insulina/sangue , Masculino , Fenilalanina/administração & dosagem , Fenilalanina/sangue , Período Pós-Prandial , Tirosina/administração & dosagem , Tirosina/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...