Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264878

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease caused by mutations affecting components of bone morphogenetic protein (BMP)/transforming growth factor-ß (TGF-ß) signaling in endothelial cells. This disorder is characterized by arteriovenous malformations that are prone to rupture, and the ensuing hemorrhages are responsible for iron-deficiency anemia. Along with activin receptor-like kinase (ALK1), mutations in endoglin are associated with the vast majority of HHT cases. In this study, we characterized the zebrafish endoglin locus and demonstrated that it produces two phylogenetically conserved protein isoforms. Functional analysis of a CRISPR/Cas9 zebrafish endoglin mutant revealed that Endoglin deficiency is lethal during the course from juvenile stage to adulthood. Endoglin-deficient zebrafish develop cardiomegaly, resulting in heart failure and hypochromic anemia, which both stem from chronic hypoxia. endoglin mutant zebrafish display structural alterations of the developing gills and underlying vascular network that coincide with hypoxia. Finally, phenylhydrazine treatment demonstrated that lowering hematocrit/blood viscosity alleviates heart failure and enhances the survival of Endoglin-deficient fish. Overall, our data link Endoglin deficiency to heart failure and establish zebrafish as a valuable HHT model.


Assuntos
Insuficiência Cardíaca , Telangiectasia Hemorrágica Hereditária , Animais , Endoglina/genética , Endoglina/metabolismo , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Peixe-Zebra , Células Endoteliais/metabolismo , Insuficiência Cardíaca/metabolismo , Receptores de Activinas Tipo II/genética
2.
ACS Nano ; 16(12): 20470-20487, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36459488

RESUMO

Cargo transport by molecular motors along microtubules is essential for the function of eukaryotic cells, in particular neurons in which axonal transport defects constitute the early pathological features of neurodegenerative diseases. Mainly studied in motor and sensory neurons, axonal transport is still difficult to characterize in neurons of the brain in absence of appropriate in vivo tools. Here, we measured fast axonal transport by tracing the second harmonic generation (SHG) signal of potassium titanyl phosphate (KTP) nanocrystals (nanoKTP) endocytosed by brain neurons of zebrafish (Zf) larvae. Thanks to the optical translucency of Zf larvae and to the perfect photostability of nanoKTP SHG, we achieved a high scanning speed of 20 frames (of ≈90 µm × 60 µm size) per second in Zf brain. We focused our study on endolysosomal vesicle transport in axons of known polarization, separately analyzing kinesin and dynein motor-driven displacements. To validate our assay, we used either loss-of-function mutations of dynein or kinesin 1 or the dynein inhibitor dynapyrazole and quantified several transport parameters. We successfully demonstrated that dynapyrazole reduces the nanoKTP mobile fraction and retrograde run length consistently, while the retrograde run length increased in kinesin 1 mutants. Taking advantage of nanoKTP SHG directional emission, we also quantified fluctuations of vesicle orientation. Thus, by combining endocytosis of nanocrystals having a nonlinear response, fast two-photon microscopy, and high-throughput analysis, we are able to finely monitor fast axonal transport in vivo in the brain of a vertebrate and reveal subtle axonal transport alterations. The high spatiotemporal resolution achieved in our model may be relevant to precisely investigate axonal transport impairment associated with disease models.


Assuntos
Dineínas , Cinesinas , Animais , Cinesinas/metabolismo , Dineínas/metabolismo , Peixe-Zebra/metabolismo , Transporte Axonal/genética , Microscopia , Larva/metabolismo , Axônios , Microtúbulos/metabolismo , Encéfalo/metabolismo
3.
Am J Respir Cell Mol Biol ; 66(4): 439-451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081328

RESUMO

Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Neutrófilos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Oxidases Duais , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Peixe-Zebra
5.
Front Immunol ; 12: 637399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708225

RESUMO

Innate immune pathways are the first line of cellular defense against pathogen infections ranging from bacteria to Metazoa. These pathways are activated following the recognition of pathogen associated molecular patterns (PAMPs) by membrane and cytosolic pattern recognition receptors. In addition, some of these cellular sensors can also recognize endogenous danger-associated molecular patterns (DAMPs) arising from damaged or dying cells and triggering innate immune responses. Among the cytosolic nucleic acid sensors, the cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) plays an essential role in the activation of the type I interferon (IFNs) response and the production of pro-inflammatory cytokines. Indeed, upon nucleic acid binding, cGAS synthesizes cGAMP, a second messenger mediating the activation of the STING signaling pathway. The functional conservation of the cGAS-STING pathway during evolution highlights its importance in host cellular surveillance against pathogen infections. Apart from their functions in immunity, cGAS and STING also play major roles in nuclear functions and tumor development. Therefore, cGAS-STING is now considered as an attractive target to identify novel biomarkers and design therapeutics for auto-inflammatory and autoimmune disorders as well as infectious diseases and cancer. Here, we review the current knowledge about the structure of cGAS and the evolution from bacteria to Metazoa and present its main functions in defense against pathogens and cancer, in connection with STING. The advantages and limitations of in vivo models relevant for studying the cGAS-STING pathway will be discussed for the notion of species specificity and in the context of their integration into therapeutic screening assays targeting cGAG and/or STING.


Assuntos
DNA/genética , Doenças do Sistema Imunitário/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Animais , DNA/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Espaço Intracelular , Proteínas de Membrana/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
6.
Viruses ; 13(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525646

RESUMO

BACKGROUND: Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs. The development of new imaging approaches is instrumental to further the description of RSV spread, virus-host interactions and related acute respiratory disease, at the level of the entire lung. METHODS: By combining tissue clearing, 3D microscopy and image processing, we developed a novel visualization tool of RSV infection in undissected mouse lungs. RESULTS: Whole tissue analysis allowed the identification of infected cell subtypes, based on both morphological traits and position within the cellular network. Furthermore, 3D imaging was also valuable to detect the cytoplasmic viral factories, also called inclusion bodies, a hallmark of RSV infection. CONCLUSIONS: Whole lung clearing and 3D deep imaging represents an unprecedented visualization method of infected lungs to allow insight into RSV pathophysiology and improve the 2D histology analyses.


Assuntos
Imageamento Tridimensional , Pulmão/patologia , Pulmão/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Animais , Modelos Animais de Doenças , Células Epiteliais/virologia , Corpos de Inclusão Viral/patologia , Camundongos , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Replicação Viral
7.
Dev Dyn ; 250(5): 701-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369805

RESUMO

BACKGROUND: In zebrafish, lymphatic endothelial cells (LECs) originate from multiple/several distinct progenitor populations and generate organ-specific lymphatic vasculatures. Cell fate and tissue specificities were determined using a combination of genetically engineered transgenic lines in which the promoter of a LEC-specific gene drives expression of a fluorescent reporter protein. RESULTS: We established a novel zebrafish transgenic line expressing eGFP under the control of part of the zebrafish batf3 promoter (Basic Leucine Zipper ATF-Like Transcription Factor 3). Spatiotemporal examination of Tg(batf3MIN:eGFP) transgenic fish revealed a typical lymphatic expression pattern, which does not perfectly recapitulate the expression pattern of existing LEC transgenic lines. eGFP+ cells constitute a heterogeneous endothelial cell population, which expressed LEC and/or blood endothelial cells (BEC) markers in different tissues. In addition, we characterize the renal eGFP+ cell as a population of interest to study kidney diseases and regeneration. CONCLUSION: Our Tg(batf3MIN:eGFP) reporter zebrafish line provides a useful system to study LEC populations, of which heterogeneity depends on origin of progenitors, tissue environment and physiological conditions. We further developed a novel fish-adapted tissue clearing method, which allows deep imaging and 3D-visualization of vascular and lymphatic networks in the whole organism.


Assuntos
Células Endoteliais , Genes Reporter , Vasos Linfáticos/citologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados
8.
J Mol Biol ; 432(20): 5529-5543, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32860771

RESUMO

Unresolved inflammation fosters and supports a wide range of human pathologies. There is growing evidence for a role played by cytosolic nucleic acids in initiating and supporting pathological chronic inflammation. In particular, the cGAS-STING pathway has emerged as central to the mounting of nucleic acid-dependent type I interferon responses, leading to the identification of small-molecule modulators of STING that have raised clinical interest. However, several new challenges have emerged, representing potential obstacles to efficient clinical translation. Indeed, the current literature underscores that nucleic acid-induced inflammatory responses are subjected to several layers of regulation, further suggesting complex coordination at the cell-type, tissue or organism level. Untangling the underlying processes is paramount to the identification of specific therapeutic strategies targeting deleterious inflammation. Herein, we present an overview of human pathologies presenting with deregulated interferon levels and with accumulation of cytosolic nucleic acids. We focus on the central role of the STING adaptor protein in these pathologies and discuss how in vivo models have forged our current understanding of nucleic acid immunity. We present our opinion on the advantages and limitations of zebrafish and mice models to highlight their complementarity for the study of inflammatory human pathologies and the development of therapeutics. Finally, we discuss high-throughput screening strategies that generate multi-parametric datasets that allow integrative analysis of heterogeneous information (imaging and omics approaches). These approaches are likely to structure the future of screening strategies for the treatment of human pathologies.


Assuntos
Imunidade , Modelos Animais , Ácidos Nucleicos/imunologia , Animais , Antivirais/farmacologia , Citosol/metabolismo , DNA Viral/análise , Avaliação Pré-Clínica de Medicamentos , Evolução Molecular , Ensaios de Triagem em Larga Escala/métodos , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
9.
J Neurochem ; 155(2): 137-153, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31811775

RESUMO

The olfactory mucosa, where the first step of odor detection occurs, is a privileged pathway for environmental toxicants and pathogens toward the central nervous system. Indeed, some pathogens can infect olfactory sensory neurons including their axons projecting to the olfactory bulb allowing them to bypass the blood-brain barrier and reach the central nervous system (CNS) through the so-called olfactory pathway. The respiratory syncytial virus (RSV) is a major respiratory tract pathogen but there is growing evidence that RSV may lead to CNS impairments. However, the mechanisms involved in RSV entering into the CNS have been poorly described. In this study, we wanted to explore the capacity of RSV to reach the CNS via the olfactory pathway and to better characterize RSV cellular tropism in the nasal cavity. We first explored the distribution of RSV infectious sites in the nasal cavity by in vivo bioluminescence imaging and a tissue clearing protocol combined with deep-tissue imaging and 3D image analyses. This whole tissue characterization was confirmed with immunohistochemistry and molecular biology approaches. Together, our results provide a novel 3D atlas of mouse nasal cavity anatomy and show that RSV can infect olfactory sensory neurons giving access to the central nervous system by entering the olfactory bulb. Cover Image for this issue: doi: 10.1111/jnc.14765.


Assuntos
Mucosa Olfatória/inervação , Mucosa Olfatória/virologia , Neurônios Receptores Olfatórios/virologia , Vírus Sinciciais Respiratórios , Animais , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/virologia , Doenças do Sistema Nervoso Central/diagnóstico por imagem , Doenças do Sistema Nervoso Central/virologia , Feminino , Cabeça/anatomia & histologia , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/virologia , Bulbo Olfatório/virologia , Mucosa Olfatória/diagnóstico por imagem , RNA Viral/isolamento & purificação , Tropismo , Replicação Viral
10.
Viruses ; 11(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242645

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge. Plasmids were delivered with surface electroporation or needle-free jet injection and European strain-derived PRRSV antigens were targeted or not to the dendritic cell receptor XCR1. Compared to MLV-alone, the DNA-MLV prime- boost regimen slightly improved the IFNγ T-cell response, and substantially increased the antibody response against envelope motives and the nucleoprotein N. The XCR1-targeting of N significantly improved the anti-N specific antibody response. Despite this immuno-potentiation, the DNA-MLV regimen did not further decrease the serum viral load or the nasal viral shedding of the challenge strain over MLV-alone. Finally, the heterologous protection, achieved in absence of detectable effective neutralizing antibodies, was not correlated to the measured antibody or to the IFNγ T-cell response. Therefore, immune correlates of protection remain to be identified and represent an important gap of knowledge in PRRSV vaccinology. This study importantly shows that a naked DNA prime immuno-potentiates an MLV, more on the B than on the IFNγ T-cell response side, and has to be further improved to reach cross-protection.


Assuntos
Imunidade Heteróloga , Esquemas de Imunização , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Mucosa Nasal/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Linfócitos T/imunologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Carga Viral , Vacinas Virais/administração & dosagem , Eliminação de Partículas Virais
11.
Front Immunol ; 10: 953, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130951

RESUMO

Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities. We identified three macrophage populations that we localized in the inverted LN spatial organization. This allowed us to ascribe porcine LN MΦ to their murine counterparts: subcapsular sinus MΦ, medullary cord MΦ and medullary sinus MΦ. We identified the different intra and extrafollicular stages of LN B cells maturation and explored the interaction of MΦ, drained antigen and follicular B cells. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major porcine pathogen that infects tissue macrophages (MΦ). PRRSV is persistent in the secondary lymphoid tissues and induces a delay in neutralizing antibodies appearance. We observed PRRSV interaction with two LN MΦ populations, of which one interacts closely with centroblasts. We observed BCL6 up-regulation in centroblast upon PRRSV infection, leading to new hypothesis on PRRSV inhibition of B cell maturation. This seminal study of porcine LN will permit fruitful comparison with murine and human LN for a better understanding of normal and inverted LN development and functioning.


Assuntos
Linfócitos B/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos
12.
Viruses ; 11(3)2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917538

RESUMO

The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.


Assuntos
Modelos Animais de Doenças , Interferon Tipo I/imunologia , Transdução de Sinais/imunologia , Viroses/veterinária , Peixe-Zebra/imunologia , Peixe-Zebra/virologia , Adjuvantes Imunológicos , Animais , Edição de Genes , Imunidade Inata , Inflamação , Viroses/imunologia
13.
Fish Shellfish Immunol ; 86: 724-733, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30550990

RESUMO

Tripartite motif (TRIM) family or RBCC proteins comprises characteristic zinc-binding domains (a RING (R), a B-box type 1 (B1) and a B-box type 2 (B2)) and coiled-coil (CC) domain followed by a C-terminus variable domain. There are about 80 different TRIM proteins in human, but more than 200 in zebrafish with several large gene expansions (ftr >70 genes; btr >30 genes; trim35 > 30 genes). Repertoires of trim genes in fish are variable across fishes, but they have been remarkably diversified independently in a number of species. In mammals, TRIM proteins are involved in antiviral immunity through an astonishing diversity of mechanisms, from direct viral restriction to modulation of immune signaling and more recently autophagy. In fish, the antiviral role of TRIM proteins remains poorly understood. In zebrafish, fish specific TRIMs so called fintrims show a signature of positive selection in the C terminus SPRY domain, reminding features of mammalian antiviral trims such as TRIM5. Expression studies show that a number of trim genes, including many fintrims, can be induced during viral infections, and may play a role in antiviral defence. Some of them trigger antiviral activity in vitro against DNA and RNA viruses, such as FTR83 that also up-regulates the expression of type I IFN in zebrafish larvae. The tissue distribution of TRIM expression suggests that they may be involved in the regionalization of antiviral immunity, providing a particular protection to sensitive areas exposed to invading pathogens.


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Peixes/genética , Proteínas com Motivo Tripartido/genética , Animais , Antivirais/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
BMC Cancer ; 18(1): 1237, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526524

RESUMO

BACKGROUND: The current treatment of malignant melanoma is limited by the lack of effective therapeutic approaches, and alternative treatments are needed. Proliferative diseases such as melanoma and other cancers may be treatable by virally-encoded apoptotic proteins that are targeted to rapidly multiplying cells. Caspase-dependent apoptosis, that is frequently used in chemotherapy, can boost the cell proliferation that caspase-independent cell death does not. METHODS: In the current study, the porcine circovirus type 2 (PCV2), proapoptotic protein ORF3 was expressed in mouse and human cancer cell lines, and its apoptotic activity was assessed. RESULTS: Quantitative assessment of the apoptotic cells by flow cytometry showed that apoptotic cell death was significantly increased in ORF3-expressing malignant cells, compared to ORF3 non-expressing cells. Our data show that PCV2 ORF3 induces apoptosis in a caspase-3 and -8 independent manner. ORF3 expression seems to cause an increase in abnormal mitosis in B16F10 melanoma cells by interacting with centrosomes and thereby disrupting the formation of the mitotic spindle. In addition, we show that ORF3 of PCV2 also exhibits significant anti-tumor effects in vivo. Although the expression of Regulator of G protein Signaling (RGS)-16 by recipient mice inhibited the development of grafted melanoma in vivo, it was not required for the antitumoral activity of ORF3. CONCLUSION: PCV2 ORF3 causes abnormal mitosis in rapidly dividing cells and increases the apoptosis of cancer cells. Apoptin might, therefore, be considered to develop future antitumoral strategies.


Assuntos
Apoptose , Circovirus , Melanoma/patologia , Proteínas Virais , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos
15.
Front Immunol ; 8: 617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603526

RESUMO

Tripartite motif (TRIM) proteins are involved in various cellular functions and constitute key factors of the antiviral innate immune response. TRIM proteins can bind viral particles directly, sending them to degradation by the proteasome, or ubiquitinate signaling molecules leading to upregulation of innate immunity. TRIM proteins are present in across metazoans but are particularly numerous in vertebrates where genes comprising a B30.2 domain have been often duplicated. In fish, a TRIM subset named finTRIM is highly diversified, with large gene numbers and clear signatures of positive selection in the B30.2 domain suggesting they may be involved in antiviral mechanisms. finTRIM provides a beautiful model to investigate the primordial implication of B30.2 TRIM subsets in the arsenal of vertebrate antiviral defenses. We show here that ftr83, a zebrafish fintrim gene mainly expressed in the gills, skin and pharynx, encodes a protein affording a potent antiviral activity. In vitro, overexpression of FTR83, but not of its close relative FTR82, induced IFN and IFN-stimulated gene expression and afforded protection against different enveloped and non-enveloped RNA viruses. The kinetics of IFN induction paralleled the development of the antiviral activity, which was abolished by a dominant negative IRF3 mutant. In the context of a viral infection, FTR83 potentiated the IFN response. Expression of chimeric proteins in which the B30.2 domain of FTR83 and the non-protective FTR82 had been exchanged, showed that IFN upregulation and antiviral activity requires both the Ring/BBox/Coiled coil domain (supporting E3 ubiquitin ligase) and the B30.2 domain of FTR83. Finally, loss of function experiments in zebrafish embryos confirms that ftr83 mediates antiviral activity in vivo. Our results show that a member of the largest TRIM subset observed in fish upregulates type I IFN response and afford protection against viral infections, supporting that TRIMs are key antiviral factors across vertebrates.

16.
Dis Model Mech ; 10(7): 847-857, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28483796

RESUMO

Alphaviruses, such as chikungunya virus (CHIKV) and Sindbis virus (SINV), are vector-borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their mechanism of entry into the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, whereas CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from the periphery to the CNS and between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies.


Assuntos
Vírus Chikungunya/fisiologia , Imageamento Tridimensional , Sistema Nervoso/virologia , Sindbis virus/fisiologia , Internalização do Vírus , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Transporte Axonal , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Febre de Chikungunya/patologia , Febre de Chikungunya/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Larva/virologia , Macrófagos/metabolismo , Microvasos/patologia , Sistema Nervoso/patologia , Tropismo/fisiologia , Replicação Viral/fisiologia , Peixe-Zebra
17.
Viruses ; 8(11)2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27827855

RESUMO

Antiviral type I interferons (IFNs) have been discovered in fish. Genomic studies revealed their considerable number in many species; some genes encode secreted and non-secreted isoforms. Based on cysteine motifs, fish type I IFNs fall in two subgroups, which use two different receptors. Mammalian type I IFN genes are intronless while type III have introns; in fish, all have introns, but structurally, both subgroups belong to type I. Type I IFNs likely appeared early in vertebrates as intron containing genes, and evolved in parallel in tetrapods and fishes. The diversity of their repertoires in fish and mammals is likely a convergent feature, selected as a response to the variety of viral strategies. Several alternative nomenclatures have been established for different taxonomic fish groups, calling for a unified system. The specific functions of each type I gene remains poorly understood, as well as their interactions in antiviral responses. However, distinct induction pathways, kinetics of response, and tissue specificity indicate that fish type I likely are highly specialized, especially in groups where they are numerous such as salmonids or cyprinids. Unravelling their functional integration constitutes the next challenge to understand how these cytokines evolved to orchestrate antiviral innate immunity in vertebrates.


Assuntos
Antivirais/metabolismo , Peixes/imunologia , Interferon Tipo I/metabolismo , Animais , Evolução Molecular , Interferon Tipo I/genética
18.
Virologie (Montrouge) ; 20(6): 321-334, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32187968

RESUMO

Real time analysis of viral infection is now feasible with the emergence of viral mutants encoding reporter genes (such as fluorescent proteins or Luciferase). The development of reverse genetic approaches in the virology field has contributed significantly to improve our knowledge on viral dissemination in mammals using intravital imaging technologies. In this context, zebra fish recently appeared as a promizing tool to study infectiology and viruses responsible for human diseases such as Herpes, Flu, hepatitis and chikungunya infections. This small vertebrate is optically transparent during the early stages of development, and has been particularly useful to study the tropism of fluorescent viruses, spreading mechanisms as well as viral persistence at cellular resolution. The size of this small organism is compatible with imaging of the whole larva using a dissecting microscope. Genome editing technology has contributed important tools that are now being exploited for the characterization of the host pathogen interaction in vivo, mainly focused on the conserved features of antiviral innate immunity.

19.
Trends Microbiol ; 22(9): 490-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24865811

RESUMO

Host-pathogen interactions can be very complex at all scales; understanding organ- or organism-level events require in vivo approaches. Besides traditional host models such as mice, the zebrafish offers an attractive cocktail of optical accessibility and genetic tractability, blended with a vertebrate-type immunity, where innate responses can easily be separated from adaptive ones. Applied to viral infections, this model has revealed unexpected idiosyncrasies among organs, which we believe may apply to the human situation. We also argue that the dynamic analysis of virus spread and immune response in zebrafish make this model particularly well suited to the exploration of the concept of infection tolerance and resistance in relation to viral diseases.


Assuntos
Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Peixe-Zebra/virologia , Animais , Resistência à Doença , Imunidade Inata , Viroses/imunologia , Viroses/patologia , Replicação Viral , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia
20.
J Immunol ; 192(9): 4328-41, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683187

RESUMO

Ease of imaging and abundance of genetic tools make the zebrafish an attractive model host to understand host-pathogen interactions. However, basic knowledge regarding the identity of genes involved in antiviral immune responses is still lagging in this species. We conducted a microarray analysis of the larval zebrafish response to two models of RNA virus infections with very different outcomes. Chikungunya virus (CHIKV) induces a rapid and protective IFN response. Infection with infectious hematopoietic necrosis virus is lethal and is associated with a delayed and inefficient IFN response. A typical signature of IFN-stimulated genes (ISGs) was observed with both viruses, but was stronger for CHIKV. We further compared the zebrafish and human ISG repertoires and made a genomic and phylogenic characterization of the main gene families. We describe a core set of well-induced ISGs conserved across vertebrates, as well as multigenic families diversified independently in each taxon. The conservation of ISGs involved in antiviral signaling indicates conservation of the main feedback loops in these pathways. Whole-mount in situ hybridization of selected transcripts in infected larvae revealed a typical pattern of expression for ISGs in the liver, gut, and blood vessels with both viruses. We further show that some inflammatory genes were additionally induced through IFN-independent pathways by infectious hematopoietic necrosis virus and not by CHIKV. This study provides a useful reference set for the analysis of host-virus interactions in zebrafish and highlights the differences between protective and nonprotective antiviral innate responses.


Assuntos
Infecções por Alphavirus/genética , Imunidade Inata/genética , Interferons/genética , Infecções por Rhabdoviridae/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Infecções por Alphavirus/imunologia , Animais , Febre de Chikungunya , Regulação da Expressão Gênica , Humanos , Imunidade Inata/imunologia , Hibridização In Situ , Vírus da Necrose Hematopoética Infecciosa/imunologia , Interferons/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Rhabdoviridae/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/virologia , Proteínas de Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...