RESUMO
The RNA chaperone Hfq regulates diverse processes in numerous bacteria. In this study, we compared phenotypes (growth rate, adherence, response to different stress conditions and virulence in Galleria mellonella) of wild-type (WT) and isogenic hfq mutants of three serovars (1, 8 and 15) of the porcine pathogen Actinobacillus pleuropneumoniae. Similar growth in rich broth was seen for all strains except Ap1∆hfq, which showed slightly reduced growth throughout the 24 h time course, and the complemented Ap8∆hfqC mutant had a prolonged lag phase. Differences were seen between the three serovar WT strains regarding adherence, stress response and virulence in G. mellonella, and deletion of hfq affected some, but not all of these phenotypes, depending on serovar. Complementation by expression of cloned hfq from an endogenous promoter only restored some WT phenotypes, indicating that complex regulatory networks may be involved, and that levels of Hfq may be as important as presence/absence of the protein regarding its contribution to gene regulation. Our results support that Hfq is a pleiotropic global regulator in A. pleuropneumoniae, but serovar-related differences exist. These results highlight the importance of testing multiple strains/serovars within a given species when determining contributions of global regulators, such as Hfq, to expression of complex phenotypes.
Assuntos
Actinobacillus pleuropneumoniae/patogenicidade , Aderência Bacteriana , Fator Proteico 1 do Hospedeiro/metabolismo , Estresse Fisiológico , Virulência , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/classificação , Animais , Modelos Animais de Doenças , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Fator Proteico 1 do Hospedeiro/genética , Larva/microbiologia , Mariposas/microbiologia , Fenótipo , Regiões Promotoras Genéticas , Sorogrupo , SuínosRESUMO
A small (3.9kb) plasmid (p518), conferring resistance to florfenicol (MIC >8µg/mL) and chloramphenicol (MIC >8µg/mL) was isolated from an Actinobacillus pleuropneumoniae clinical isolate from Southeastern Brazil. To date, this is the smallest florfenicol resistance plasmid isolated from a member of the Pasteurellaceae. The complete nucleotide of this plasmid revealed a unique gene arrangement compared to previously reported florfenicol resistance plasmids found in other members of the Pasteurellaceae. In addition to the floR gene and a lysR gene, common to various florfenicol resistance plasmids, p518 also encodes strA and a partial strB sequence. An origin of replication (oriV) similar to that in the broad host range plasmid, pLS88, was identified in p518, and transformation into Escherichia coli MFDpir confirmed the ability to replicate in other species. Mobilisation genes appear to have been lost, with only a partial mobC sequence remaining, and attempts to transfer p518 from a conjugal donor strain (E. coli MFDpir) were not successful, suggesting this plasmid is not mobilisable. Similarly, attempts to transfer p518 into a competent A. pleuropneumoniae strain, MIDG2331, by natural transformation were also not successful. These results suggest that p518 may be only transferred by vertical descent.
Assuntos
Actinobacillus pleuropneumoniae/genética , Plasmídeos/genética , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , América do SulRESUMO
Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies.
Assuntos
Actinobacillus pleuropneumoniae/genética , Algoritmos , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Actinobacillus pleuropneumoniae/patogenicidade , Genoma Bacteriano , Pequeno RNA não Traduzido/química , Software , TranscriptomaRESUMO
Actinobacillus pleuropneumoniae is responsible for swine pleuropneumonia, a respiratory disease that causes significant global economic loss. Its virulence depends on many factors, such as capsular polysaccharides, RTX toxins and iron-acquisition systems. Analysis of virulence may require easy-to-use models that approximate mammalian infection and avoid ethical issues. Here, we investigate the potential use of the wax moth Galleria mellonella as an informative model for A. pleuropneumoniae infection. Genotypically distinct A. pleuropneumoniae clinical isolates were able to kill larvae at 37 °C but had different LD50 values, ranging from 10(4) to 10(7) c.f.u. per larva. The most virulent isolate (1022) was able to persist and replicate within the insect, while the least virulent (780) was rapidly cleared. We observed a decrease in haemocyte concentration, aggregation and DNA damage post-infection with isolate 1022. Melanization points around bacterial cells were observed in the fat body and pericardial tissues of infected G. mellonella, indicating vigorous cell and humoral immune responses close to the larval dorsal vessel. As found in pigs, an A. pleuropneumoniae hfq mutant was significantly attenuated for infection in the G. mellonella model. Additionally, the model could be used to assess the effectiveness of several antimicrobial agents against A. pleuropneumoniae in vivo. G. mellonella is a suitable inexpensive alternative infection model that can be used to study the virulence of A. pleuropneumoniae, as well as assess the effectiveness of antimicrobial agents against this pathogen.
Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/fisiologia , Modelos Animais de Doenças , Mariposas/microbiologia , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Humanos , Larva/microbiologia , VirulênciaRESUMO
Bacterial respiratory diseases are responsible for considerable mortality, morbidity and economic losses in the swine industry. Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is one of the most important disease agents, but its identification and surveillance can be impaired by the existence of many other related bacteria in normal swine microbiota. In this work, we have evaluated a BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) sequence characterised amplified region (SCAR) marker for the specific identification of A. pleuropneumoniae and its use in a multiplex PCR to detect additionally Haemophilus parasuis and Pasteurella multocida, two other major respiratory pathogens of pigs that are members of the family Pasteurellaceae. PCRs based on the BOX-SCAR fragment developed were rapid, sensitive and differentiated A. pleuropneumoniae from all swine-related members of the Pasteurellaceae family tested. Single and multiplex BOX-SCAR fragment-based PCRs can be used to identify A. pleuropneumoniae from other bacterial swine pathogens and will be useful in surveillance and epidemiological studies.
Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/classificação , Animais , Sequências Repetidas Invertidas , SuínosRESUMO
Brazilian purpuric fever (BPF) is a fulminant septicaemic infection of young children, caused by a clonal group of strains of Haemophilus influenzae biogroup aegyptius (Hae), an organism previously solely associated with conjunctivitis. Their special capacity to invade from the initial site of conjunctival infection is unexplained. A polymerase chain reaction (PCR)-amplified subtractive hybridization technique was used to identify genes specific to the BPF clonal group. A copy of bacteriophage HP1 and 46 further chromosomal loci were identified in the BPF but not in the conjunctivitis strain of Hae. Sixteen were characterized further, and one - encoding an analogue of the Legionella pneumophila epithelial cell entry-enhancing protein EnhC - was investigated in depth. Two genes, bpf001 and bpf002, unique to the BPF clonal group were identified between homologues of HI1276 and HI1277 in a complex locus close to H. influenzae genetic island 1, recently identified in pathogenic H. influenzae type b. Bpf001 encodes a protein homologous to EnhC and to the previously uncharacterized product of the meningococcal gene NMB0419. Functional studies of bpf001 proving intractable, NMB0419 was chosen as a surrogate for investigation and shown to modulate bacterial interaction with monolayers of human respiratory epithelial cells, promoting invasion, the first stage (for Hae) in the pathogenesis of BPF.