Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 14(1): e1700771, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29710434

RESUMO

Biologic manufacturing processes typically employ clarification technologies like depth filtration to remove insoluble and soluble impurities. Conventional depth filtration media used in these processes contain naturally-derived components like diatomaceous earth and cellulose. These components may introduce performance variability and contribute extractable/leachable components like beta-glucans that could interfere with limulus amebocyte lysate endotoxin assays. Recently a novel, all-synthetic depth filtration media is developed (Millistak+® HC Pro X0SP) that may improve process consistency, efficiency, and drug substance product quality by reducing soluble process impurities. This new media is evaluated against commercially available benchmark filters containing naturally-derived components (Millistak+® HC X0HC and B1HC). Using model proteins, the synthetic media demonstrates increased binding capacity of positively charged proteins (72-126 mg g-1 media) compared to conventional media (0.3-8.6 mg g-1 media); and similar values for negatively charged species (1.3-5.6 mg g-1 media). Several CHO-derived monoclonal antibodies (mAbs) or mAb-like molecules are also evaluated. The X0SP filtration performance behaves similarly to benchmarks, and exhibits improved HCP reduction (at least 50% in 55% of cases tested). X0SP filtrates contained increased silicon extractables relative to benchmarks, but these were readily removed downstream. Finally, the X0SP devices demonstrates suitable lot-to-lot robustness when specific media components are altered intentionally to manufacturing specification limits.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Biotecnologia/métodos , Animais , Células CHO , Centrifugação , Cricetulus
2.
Biotechnol Prog ; 32(4): 998-1008, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111574

RESUMO

To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016.


Assuntos
Anticorpos Monoclonais/química , Técnicas de Cultura de Células , Meios de Cultura/química , Cisteína/química , Compostos Férricos/química , Compostos de Amônio Quaternário/química , Animais , Células CHO , Células Cultivadas , Cricetulus , Estabilidade de Medicamentos , Soluções
3.
J Biol Chem ; 277(42): 39296-303, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12167648

RESUMO

Previous work with the bovine phenol sulfotransferase (bSULT1A1, EC ) demonstrated inhibition by CoA that was competitive with respect to the sulfuryl donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) (Leach, M., Cameron, E., Fite, N., Stassinopoulos, J., Palmreuter, N., and Beckmann, J. D. (1999) Biochem. Biophys. Res. Commun. 261, 815-819). Here we report that long chain acyl-CoAs are more potent inhibitors of bSULT1A1 and also of human dopamine sulfotransferase (SULT1A3) when compared with unesterified CoA and short chain-length acyl-CoAs. A complex pattern of inhibition was revealed by systematic variation of palmitoyl-CoA, PAPS, and 7-hydroxycoumarin, the acceptor substrate. Convex plots of apparent K(m)/V(max) versus [palmitoyl-CoA] were adequately modeled using an ordered rapid equilibrium scheme with PAPS as the leading substrate and by accounting for the possible binding of two equivalents of inhibitor to the dimeric enzyme. Interestingly, the first K(i) of 2-3 microm was followed by a second K(i) of only 0.01-0.05 microm, suggesting that positive subunit cooperativity enhances binding of long chain acyl-CoAs to this sulfotransferase. Simultaneous interaction of palmitoyl-CoA with both the nucleotide and phenol binding sites is suggested by two experiments. First, the acyl-CoA displaced 7-hydroxycoumarin from the highly fluorescent bSULT1A1.PAP.7-HC complex in a cooperative manner. Second, palmitoyl-CoA prevented the quenching of bSULT1A1 fluorescence observed with pentachlorophenol. Finally, titrations of bSULT1A1-pentachlorophenol complex with palmitoyl-CoA caused the return of protein fluorescence, and the binding of palmitoyl-CoA was highly cooperative (Hill constant of 1.9). Overall, these results suggest a model of sulfotransferase inhibition in which the 3'-phosphoadenosine-5'-diphosphate moiety of CoA docks to the PAPS domain, and the acyl-pantetheine group docks to the hydrophobic phenol binding domain.


Assuntos
Arilsulfotransferase/antagonistas & inibidores , Coenzima A/metabolismo , Inibidores Enzimáticos/farmacologia , Ésteres/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Modelos Químicos , Palmitoil Coenzima A/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA