Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(10): 1607-1617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723202

RESUMO

Cardenolides are specialized, steroidal metabolites produced in a wide array of plant families1,2. Cardenolides play protective roles in plants, but these molecules, including digoxin from foxglove (Digitalis spp.), are better known for treatment of congenital heart failure, atrial arrhythmia, various cancers and other chronic diseases3-9. However, it is still unknown how plants synthesize 'high-value', complex cardenolide structures from, presumably, a sterol precursor. Here we identify two cytochrome P450, family 87, subfamily A (CYP87A) enzymes that act on both cholesterol and phytosterols (campesterol and ß-sitosterol) to form pregnenolone, the first committed step in cardenolide biosynthesis in the two phylogenetically distant plants Digitalis purpurea and Calotropis procera. Arabidopsis plants overexpressing these CYP87A enzymes ectopically accumulated pregnenolone, whereas silencing of CYP87A in D. purpurea leaves by RNA interference resulted in substantial reduction of pregnenolone and cardenolides. Our work uncovers the key entry point to the cardenolide pathway, and expands the toolbox for sustainable production of high-value plant steroids via synthetic biology.


Assuntos
Cardenolídeos , Digitalis , Cardenolídeos/metabolismo , Plantas/metabolismo , Digitalis/química , Digitalis/metabolismo , Pregnenolona
2.
Angew Chem Int Ed Engl ; 62(35): e202304843, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326625

RESUMO

Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.


Assuntos
Peptídeo Sintases , Espectrometria de Massas em Tandem , Cromatografia Líquida , Peptídeo Sintases/metabolismo , Especificidade por Substrato
3.
Angew Chem Int Ed Engl ; 61(48): e202210934, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36198083

RESUMO

Medium-chain alcohol dehydrogenases (ADHs) comprise a highly conserved enzyme family that catalyse the reversible reduction of aldehydes. However, recent discoveries in plant natural product biosynthesis suggest that the catalytic repertoire of ADHs has been expanded. Here we report the crystal structure of dihydroprecondylocarpine acetate synthase (DPAS), an ADH that catalyses the non-canonical 1,4-reduction of an α,ß-unsaturated iminium moiety. Comparison with structures of plant-derived ADHs suggest the 1,4-iminium reduction does not require a proton relay or the presence of a catalytic zinc ion in contrast to canonical 1,2-aldehyde reducing ADHs that require the catalytic zinc and a proton relay. Furthermore, ADHs that catalysed 1,2-iminium reduction required the presence of the catalytic zinc and the loss of the proton relay. This suggests how the ADH active site can be modified to perform atypical carbonyl reductions, providing insight into how chemical reactions are diversified in plant metabolism.


Assuntos
Álcool Desidrogenase , Prótons , Álcool Desidrogenase/metabolismo , Plantas/metabolismo , Etanol , Catálise , Zinco/metabolismo
5.
Nat Commun ; 13(1): 4718, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953485

RESUMO

Thousands of natural products are derived from the fused cyclopentane-pyran molecular scaffold nepetalactol. These natural products are used in an enormous range of applications that span the agricultural and medical industries. For example, nepetalactone, the oxidized derivative of nepetalactol, is known for its cat attractant properties as well as potential as an insect repellent. Most of these naturally occurring nepetalactol-derived compounds arise from only two out of the eight possible stereoisomers, 7S-cis-trans and 7R-cis-cis nepetalactols. Here we use a combination of naturally occurring and engineered enzymes to produce seven of the eight possible nepetalactol or nepetalactone stereoisomers. These enzymes open the possibilities for biocatalytic production of a broader range of iridoids, providing a versatile system for the diversification of this important natural product scaffold.


Assuntos
Produtos Biológicos , Iridoides , Biocatálise , Ciclopentanos , Estereoisomerismo
6.
Curr Opin Biotechnol ; 65: 17-24, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31841858

RESUMO

The discovery and supply of plant-derived anti-cancer compounds remain challenging given their low bioavailability and structural complexity. Reconstituting the pathways of these compounds in heterologous hosts is a promising solution; however, requires the complete elucidation of the biosynthetic genes involved and extensive metabolic engineering to optimise enzyme activity and metabolic flux. This review describes the current strategies and recent advancements in the production of these valuable therapeutic compounds, and highlights plant-derived immunomodulators as an emerging class of anti-cancer agents.


Assuntos
Antineoplásicos , Artemisininas , Vias Biossintéticas , Engenharia Metabólica , Plantas/genética
7.
Nat Chem Biol ; 14(8): 760-763, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29942076

RESUMO

Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochrome P450s from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the ß-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.


Assuntos
Catharanthus/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Gelsemium/enzimologia , Alcaloides Indólicos/metabolismo , Rauwolfia/enzimologia , Ciclização , Alcaloides Indólicos/química , Conformação Molecular , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...