Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 154(1): 49-59, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984740

RESUMO

BACKGROUND: Developing neurons have high thyroid hormone and iron requirements to support their metabolically demanding growth. Early-life iron and thyroid-hormone deficiencies are prevalent and often coexist, and each independently increases risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid-hormone concentrations and impairs thyroid hormone-responsive gene expression in the neonatal rat brain, but it is unclear whether the effect is cell-intrinsic. OBJECTIVES: This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. METHODS: Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 d in vitro (DIV). At 11DIV and 18DIV, thyroid hormone-regulated gene messenger ribonucleic acid (mRNA)concentrations indexing thyroid hormone homeostasis (Hairless, mu-crystallin, Type II deiodinase, solute carrier family member 1c1, and solute carrier family member 16a2) and neurodevelopment (neurogranin, Parvalbumin, and Krüppel-like factor 9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures, and gene expression and adenosine 5'-triphosphate (ATP) concentrations were quantified at 21DIV. RESULTS: At 11DIV and 18DIV, neuronal iron deficiency decreased neurogranin, Parvalbumin, and mu-crystallin, and by 18DIV, solute carrier family member 16a2, solute carrier family member 1c1, Type II deiodinase, and Hairless were increased, suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal component analysis reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status. Iron repletion from 14-21DIV did not restore ATP concentration, and Principal component analysis suggests that, after iron repletion, cultures maintain a gene expression signature indicative of previous iron deficiency. CONCLUSIONS: These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of the homeostatic response to acutely match neuronal energy production and growth signaling. However, the adaptation to iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.


Assuntos
Deficiências de Ferro , Neurogranina , Humanos , Ratos , Criança , Animais , Camundongos , Neurogranina/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/farmacologia , Cristalinas mu , Neurônios/metabolismo , Hormônios Tireóideos , Hipocampo/metabolismo , Ferro/metabolismo , Trifosfato de Adenosina/metabolismo , Expressão Gênica , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia
2.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398002

RESUMO

Background: Developing neurons have high thyroid hormone and iron requirements to support their metabolism and growth. Early-life iron and thyroid hormone deficiencies are prevalent, often coexist, and increase the risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid hormone levels and impairs thyroid hormone-responsive gene expression in the neonatal rat brain. Objective: This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. Methods: Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 days in vitro (DIV). At 11DIV and 18DIV, mRNA levels for thyroid hormone-regulated genes indexing thyroid hormone homeostasis (Hr, Crym, Dio2, Slco1c1, Slc16a2) and neurodevelopment (Nrgn, Pvalb, Klf9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures and gene expression and ATP levels were quantified at 21DIV. Results: At 11DIV and 18DIV, neuronal iron deficiency decreased Nrgn, Pvalb, and Crym, and by 18DIV, Slc16a2, Slco1c1, Dio2, and Hr were increased; collectively suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal Component Analysis (PCA) reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status (Tfr1 mRNA). Iron repletion from 14-21DIV restored neurodevelopmental genes, but not all thyroid hormone homeostatic genes, and ATP concentrations remained significantly altered. PCA clustering suggests that cultures replete with iron maintain a gene expression signature indicative of previous iron deficiency. Conclusions: These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of homeostatic response to match neuronal energy production and growth signaling for these important metabolic regulators. However, iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.

3.
Curr Biol ; 32(1): 14-25.e4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678162

RESUMO

Schizophrenia results from hundreds of known causes, including genetic, environmental, and developmental insults that cooperatively increase risk of developing the disease. In spite of the diversity of causal factors, schizophrenia presents with a core set of symptoms and brain abnormalities (both structural and functional) that particularly impact the prefrontal cortex. This suggests that many different causal factors leading to schizophrenia may cause prefrontal neurons and circuits to fail in fundamentally similar ways. The nature of convergent malfunctions in prefrontal circuits at the cell and synaptic levels leading to schizophrenia are not known. Here, we apply convergence-guided search to identify core pathological changes in the functional properties of prefrontal circuits that lie downstream of mechanistically distinct insults relevant to the disease. We compare the impacts of blocking NMDA receptors in monkeys and deleting a schizophrenia risk gene in mice on activity timing and effective communication in prefrontal local circuits. Although these manipulations operate through distinct molecular pathways and biological mechanisms, we found they produced convergent pathophysiological effects on prefrontal local circuits. Both manipulations reduced the frequency of synchronous (0-lag) spiking between prefrontal neurons and weakened functional interactions between prefrontal neurons at monosynaptic lags as measured by information transfer between the neurons. The two observations may be related, as reduction in synchronous spiking between prefrontal neurons would be expected to weaken synaptic connections between them via spike-timing-dependent synaptic plasticity. These data suggest that the link between spike timing and synaptic connectivity could comprise the functional vulnerability that multiple risk factors exploit to produce disease.


Assuntos
Esquizofrenia , Animais , Camundongos , Neurônios/metabolismo , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética
4.
J Nutr ; 152(3): 747-757, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958369

RESUMO

BACKGROUND: Fetal-neonatal iron deficiency causes learning/memory deficits that persist after iron repletion. Simplified hippocampal neuron dendrite structure is a key mechanism underlying these long-term impairments. Early life choline supplementation, with postnatal iron repletion, improves learning/memory performance in formerly iron-deficient (ID) rats. OBJECTIVES: To understand how choline improves iron deficiency-induced hippocampal dysfunction, we hypothesized that direct choline supplementation of ID hippocampal neurons may restore cellular energy production and dendrite structure. METHODS: Embryonic mouse hippocampal neuron cultures were made ID with 9 µM deferoxamine beginning at 3 d in vitro (DIV). At 11 DIV, iron repletion (i.e., deferoxamine removal) was performed on a subset of ID cultures. These neuron cultures and iron-sufficient (IS) control cultures were treated with 30 µM choline (or vehicle) between 11 and 18 DIV. At 18 DIV, the independent and combined effects of iron and choline treatments (2-factor ANOVA) on neuronal dendrite numbers, lengths, and overall complexity and mitochondrial respiration and glycolysis were analyzed. RESULTS: Choline treatment of ID neurons (ID + Cho) significantly increased overall dendrite complexity (150, 160, 180, and 210 µm from the soma) compared with untreated ID neurons to a level of complexity that was no longer significantly different from IS neurons. The average and total length of primary dendrites in ID + Cho neurons were significantly increased by ∼15% compared with ID neurons, indicating choline stimulation of dendrite growth. Measures of mitochondrial respiration, glycolysis, and ATP production rates were not significantly altered in ID + Cho neurons compared with ID neurons, remaining significantly reduced compared with IS neurons. Iron repletion significantly improved mitochondrial respiration, ATP production rates, overall dendrite complexity (100-180 µm from the soma), and dendrite and branch lengths compared with untreated ID neurons. CONCLUSIONS: Because choline partially restores dendrite structure in ID neurons without iron repletion, it may have therapeutic potential when iron treatment is not possible or advisable. Choline's mechanism in ID neurons requires further investigation.


Assuntos
Deficiências de Ferro , Ferro , Trifosfato de Adenosina , Animais , Colina/farmacologia , Desferroxamina/farmacologia , Dendritos , Suplementos Nutricionais , Hipocampo , Ferro/farmacologia , Camundongos , Neurônios , Ratos
5.
Psychopharmacology (Berl) ; 237(9): 2673-2684, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488350

RESUMO

RATIONALE: Caveolin-1 (CAV1) is a structural protein critical for spatial organization of neuronal signaling molecules. Whether CAV1 is required for long-lasting neuronal plasticity remains unknown. OBJECTIVE AND METHODS: We sought to examine the effects of CAV1 knockout (KO) on functional plasticity and hypothesized that CAV1 deficiency would impact drug-induced long-term plasticity in the nucleus accumbens (NAc). We first examined cell morphology of NAc medium spiny neurons in a striatal/cortical co-culture system before moving in vivo to study effects of CAV1 KO on cocaine-induced plasticity. Whole-cell patch-clamp recordings were performed to determine effects of chronic cocaine (15 mg/kg) on medium spiny neuron excitability. To test for deficits in behavioral plasticity, we examined the effect of CAV1 KO on locomotor sensitization. RESULTS: Disruption of CAV1 expression leads to baseline differences in medium spiny neuron (MSN) structural morphology, such that MSNs derived from CAV1 KO animals have increased dendritic arborization when cultured with cortical neurons. The effect was dependent on phospholipase C and cell-type intrinsic loss of CAV1. Slice recordings of nucleus accumbens shell MSNs revealed that CAV1 deficiency produces a loss of neuronal plasticity. Specifically, cocaine-induced firing rate depression was absent in CAV1 KO animals, whereas baseline electrophysiological properties were similar. This was reflected by a loss of cocaine-mediated behavioral sensitization in CAV1 KO animals, with unaffected baseline locomotor responsiveness. CONCLUSIONS: This study highlights a critical role for nucleus accumbens CAV1 in plasticity related to the administration of drugs of abuse.


Assuntos
Caveolina 1/deficiência , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Animais , Caveolina 1/genética , Cocaína/farmacologia , Técnicas de Cocultura , Inibidores da Captação de Dopamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp
6.
J Neurosci ; 39(5): 802-813, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30523068

RESUMO

During development, neurons require highly integrated metabolic machinery to meet the large energy demands of growth, differentiation, and synaptic activity within their complex cellular architecture. Dendrites/axons require anterograde trafficking of mitochondria for local ATP synthesis to support these processes. Acute energy depletion impairs mitochondrial dynamics, but how chronic energy insufficiency affects mitochondrial trafficking and quality control during neuronal development is unknown. Because iron deficiency impairs mitochondrial respiration/ATP production, we treated mixed-sex embryonic mouse hippocampal neuron cultures with the iron chelator deferoxamine (DFO) to model chronic energetic insufficiency and its effects on mitochondrial dynamics during neuronal development. At 11 days in vitro (DIV), DFO reduced average mitochondrial speed by increasing the pause frequency of individual dendritic mitochondria. Time spent in anterograde motion was reduced; retrograde motion was spared. The average size of moving mitochondria was reduced, and the expression of fusion and fission genes was altered, indicating impaired mitochondrial quality control. Mitochondrial density was not altered, suggesting that respiratory capacity and not location is the key factor for mitochondrial regulation of early dendritic growth/branching. At 18 DIV, the overall density of mitochondria within terminal dendritic branches was reduced in DFO-treated neurons, which may contribute to the long-term deficits in connectivity and synaptic function following early-life iron deficiency. The study provides new insights into the cross-regulation between energy production and dendritic mitochondrial dynamics during neuronal development and may be particularly relevant to neuropsychiatric and neurodegenerative diseases, many of which are characterized by impaired brain iron homeostasis, energy metabolism and mitochondrial trafficking.SIGNIFICANCE STATEMENT This study uses a primary neuronal culture model of iron deficiency to address a gap in understanding of how dendritic mitochondrial dynamics are regulated when energy depletion occurs during a critical period of neuronal maturation. At the beginning of peak dendritic growth/branching, iron deficiency reduces mitochondrial speed through increased pause frequency, decreases mitochondrial size, and alters fusion/fission gene expression. At this stage, mitochondrial density in terminal dendrites is not altered, suggesting that total mitochondrial oxidative capacity and not trafficking is the main mechanism underlying dendritic complexity deficits in iron-deficient neurons. Our findings provide foundational support for future studies exploring the mechanistic role of developmental mitochondrial dysfunction in neurodevelopmental, psychiatric, and neurodegenerative disorders characterized by mitochondrial energy production and trafficking deficits.


Assuntos
Dendritos/metabolismo , Dendritos/patologia , Metabolismo Energético , Hipocampo/patologia , Deficiências de Ferro , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Neurônios/patologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Quelantes/farmacologia , Desferroxamina/farmacologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurogênese
7.
Dev Neurosci ; 38(4): 264-276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27669335

RESUMO

Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of the iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a degree of neuronal ID similar to that seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i.e. BdnfVI,Camk2a,Vamp1,Psd95,Cfl1, Pfn1,Pfn2, and Gda) and mitochondrial function (i.e. Ucp2,Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons were reduced. By 18DIV, partial recovery of the dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and the length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism, is responsible for the effects of fetal/neonatal ID and IDA on hippocampal neuron dendritic and synaptic maturation. Impairments in these neurodevelopmental processes likely underlie the negative impact of early life ID and IDA on hippocampus-mediated learning and memory.


Assuntos
Dendritos/metabolismo , Metabolismo Energético/fisiologia , Expressão Gênica/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Deficiências de Ferro , Anemia Ferropriva/metabolismo , Animais , Animais Recém-Nascidos , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Neurogênese
8.
Front Cell Neurosci ; 9: 269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257605

RESUMO

Medium spiny neurons (MSNs) are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine (DA) in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of DA on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF) has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment.

9.
J Neurosci Methods ; 200(1): 1-13, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21672554

RESUMO

Dendritic spines of striatal Medium Spiny Neurons (MSNs) receive converging dopaminergic and glutamatergic inputs. These spines undergo experience-dependent structural plasticity following repeated drug administration and during disease states like Huntington's and Parkinson's. Thus, understanding the molecular mechanisms leading to structural plasticity is an important step toward establishing a clear relationship between spine structure and function, and will ultimately contribute to understanding how changes in dendritic spine structure relate to behaviors or diseases. One major difficulty faced when studying MSN development is the lack of a detailed, standardized in vitro model system that produces MSNs with in vivo-like morphologies. For example, unlike cultured pyramidal neurons, MSNs grown in mono-cultures display stunted dendritic arborization and fail to develop a full cohort of mature dendritic spines. Here we report the generation of an embryonic mouse cortical-striatal co-culture that generates high cell yields from a single embryo. Unlike MSNs in striatal mono-culture, MSNs in co-culture develop in vivo-like morphologies and high densities of dendritic spines. Morphological identification of co-cultured MSNs expressing a soluble fluorescent protein can be confirmed by immunochemical detection of DARPP-32 (Dopamine and cyclic AMP regulated phosphoprotein of 32kDa). Additionally, co-cultured MSN spines contain PSD-95 puncta and are apposed to SV2 puncta, indicating the spines express synaptic machinery. Finally, whole-cell recordings of co-cultured MSNs exhibit higher mEPSC frequency compared to mono-cultured MSNs, suggesting that the spines are functionally mature. These studies establish that this co-culture system is suitable for studying the morphological and physiological development and function of MSN dendritic spines.


Assuntos
Diferenciação Celular/fisiologia , Corpo Estriado/citologia , Corpo Estriado/embriologia , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Cultura Primária de Células/métodos , Animais , Técnicas de Cocultura/métodos , Corpo Estriado/fisiologia , Feminino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Gravidez
10.
Dev Neurobiol ; 71(9): 747-58, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21557512

RESUMO

The emergence of axonal filopodia is the first step in the formation of axon collateral branches. In vitro, axonal filopodia emerge from precursor cytoskeletal structures termed actin patches. However, nothing is known about the cytoskeletal dynamics of the axon leading to the formation of filopodia in the relevant tissue environment. In this study we investigated the role of the actin nucleating Arp2/3 complex in the formation of sensory axon actin patches, filopodia, and branches. By combining in ovo chicken embryo electroporation mediated gene delivery with a novel acute ex vivo spinal cord preparation, we demonstrate that actin patches form along sensory axons and give rise to filopodia in situ. Inhibition of Arp2/3 complex function in vitro and in vivo decreases the number of axonal filopodia. In vitro, Arp2/3 complex subunits and upstream regulators localize to actin patches. Analysis of the organization of actin filaments in actin patches using platinum replica electron microscopy reveals that patches consist of networks of actin filaments, and filaments in axonal filopodia exhibit an organization consistent with the Arp2/3-based convergent elongation mechanism. Nerve growth factor (NGF) promotes formation of axonal filopodia and branches through phosphoinositide 3-kinase (PI3K). Inhibition of the Arp2/3 complex impairs NGF/PI3K-induced formation of axonal actin patches, filopodia, and the formation of collateral branches. Collectively, these data reveal that the Arp2/3 complex contributes to the formation of axon collateral branches through its involvement in the formation of actin patches leading to the emergence of axonal filopodia.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada a Actina/fisiologia , Proteína 3 Relacionada a Actina/fisiologia , Axônios/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Cones de Crescimento/fisiologia , Pseudópodes/metabolismo , Citoesqueleto de Actina/fisiologia , Proteína 2 Relacionada a Actina/antagonistas & inibidores , Proteína 3 Relacionada a Actina/antagonistas & inibidores , Animais , Embrião de Galinha , Galinhas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Cultura Primária de Células , Pseudópodes/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia
11.
Neuron ; 68(6): 1067-81, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21172610

RESUMO

The microtubule-associated protein tau accumulates in Alzheimer's and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mistargeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines.


Assuntos
Espinhas Dendríticas/metabolismo , Degeneração Neural/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/química , Espinhas Dendríticas/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Degeneração Neural/fisiopatologia , Fosforilação/fisiologia , Ratos , Sinapses/química , Sinapses/fisiologia , Proteínas tau/fisiologia
12.
Dev Neurobiol ; 69(9): 568-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19449315

RESUMO

Elevated levels of serum unconjugated bilirubin (UCB) in the first weeks of life may lead to long-term neurologic impairment. We previously reported that an early exposure of developing neurons to UCB, in conditions mimicking moderate to severe neonatal jaundice, leads to neuritic atrophy and cell death. Here, we have further analyzed the effect of UCB on nerve cell differentiation and neuronal development, addressing how UCB may affect the viability of undifferentiated neural precursor cells and their fate decisions, as well as the development of hippocampal neurons in terms of dendritic and axonal elongation and branching, the axonal growth cone morphology, and the establishment of dendritic spines and synapses. Our results indicate that UCB reduces the viability of proliferating neural precursors, decreases neurogenesis without affecting astrogliogenesis, and increases cellular dysfunction in differentiating cells. In addition, an early exposure of neurons to UCB decreases the number of dendritic and axonal branches at 3 and 9 days in vitro (DIV), and a higher number of neurons showed a smaller growth cone area. UCB-treated neurons also reveal a decreased density of dendritic spines and synapses at 21 DIV. Such deleterious role of UCB in neuronal differentiation, development, and plasticity may compromise the performance of the brain in later life.


Assuntos
Antioxidantes/farmacologia , Bilirrubina/farmacologia , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Sinapses/efeitos dos fármacos , Análise de Variância , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Transfecção/métodos
13.
Differentiation ; 77(1): 38-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19281763

RESUMO

During development, dynamic changes in the actin cytoskeleton determine both cell motility and morphological differentiation. In most mature tissues, cells are generally minimally motile and have morphologies specialized to their functions. In metastatic cancer, cells generally lose their specialized morphology and become motile. Therefore, proteins that regulate the transition between the motile and morphologically differentiated states can play important roles in determining cancer outcomes. AFAP120 is a neuronal-specific protein that binds Src kinase and protein kinase C (PKC) and cross-links actin filaments. Here we report that expression and tyrosine phosphorylation of AFAP120 are developmentally regulated in the cerebellum. In cerebellar cultures, PKC activation induces Src kinase-dependent phosphorylation of AFAP120, indicating that AFAP120 may be a downstream effector of Src. In neuroblastoma cells induced to differentiate by treatment with a PKC activator, tyrosine phosphorylation of AFAP120 appears to regulate the formation of the lamellar actin structures and subsequent neurite initiation. Together, these results indicate that AFAP120 plays a role in organizing dynamic actin structures during neuronal differentiation and suggest that AFAP120 may help regulate the transition from motile precursor to morphologically differentiated neurons.


Assuntos
Actinas/metabolismo , Diferenciação Celular , Cerebelo/citologia , Proteínas dos Microfilamentos/metabolismo , Neurônios/citologia , Animais , Linhagem Celular Tumoral , Camundongos , Neuritos/metabolismo , Proteína Quinase C/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo
14.
Cytometry A ; 75(4): 371-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18937344

RESUMO

Studies of neuronal differentiation in vitro often involve tracing and analysis of neurites. NeuronJ (Meijering et al., Cytometry Part A 2004;58A:167-176; http://www.imagescience.org/meijering/software/neuronj/) is a program that can be used for semiautomated tracing of individual neurons; when tracing is completed, a text file containing neurite length measurements is generated. Using cultured hippocampal neurons, we have found that to reach statistical significance it is generally necessary to trace about 100 neurons in each treatment group. Posttracing data analysis requires importing each text file into a statistics program. Analysis of distinct parameters, such as effects of a treatment on axonal versus dendritic branching, requires a great deal of time consuming posttracing data manipulation. We have developed XL_Calculations, a Java-based program that performs batch analysis on NeuronJ measurement files and automatically makes multiple calculations, including the number, length, and total output (sum length) of primary, secondary, and tertiary neurites on axons and dendrites, and writes the calculations into an Excel worksheet. Batch processing of NeuronJ measurement files dramatically reduces the time required to analyze neuronal morphology. In addition, our program performs more than 45 distinct calculations, enabling detailed determination of treatment effects on neuronal differentiation. Using this program to analyze NeuronJ tracing data, we demonstrate that continuous exposure of differentiating hippocampal neurons to Netrin 1 increases the number of secondary branches on both axons and dendrites, without significantly altering the length of the axon, dendrites, or branches. Similar results were obtained when neurons were grown on poly-D-lysine or laminin.


Assuntos
Algoritmos , Processamento Eletrônico de Dados/métodos , Citometria por Imagem/métodos , Microscopia/métodos , Neurônios/citologia , Software/tendências , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Forma Celular/fisiologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/ultraestrutura , Hipocampo/citologia , Hipocampo/fisiologia , Citometria por Imagem/instrumentação , Camundongos , Microscopia/instrumentação , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Netrina-1 , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Validação de Programas de Computador , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/farmacologia
15.
Neurosci Lett ; 444(2): 132-6, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18723076

RESUMO

Growth cone guidance and axon elongation require the dynamic coordinated regulation of the actin cytoskeleton. As the growth cone moves, actin-dependent forces generate tension that enables protrusive activity in the periphery and drives growth cone translocation. This dynamic remodeling of the actin cytoskeleton in response to membrane tension requires activation of Src kinase. Although it has been proposed that these actin-dependent forces vary with the extent of actin cross-linking, the identity of the cross-linking protein(s) remains unknown. AFAP120 is a nervous system specific actin cross-linking protein that is regulated by Src kinase phosphorylation. Here, we report that AFAP120 is expressed and tyrosine phosphorylated in differentiating cerebellar granule cells, where it is enriched in the axon and growth cone. Over-expression of AFAP120 enhances neurite elongation in a tyrosine phosphorylation-dependent manner. These findings suggest that AFAP120 may coordinate Src signaling with the dynamic changes in the actin cytoskeleton that drive growth cone motility and axon elongation.


Assuntos
Axônios/fisiologia , Proteínas dos Microfilamentos/fisiologia , Fosfoproteínas/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem Celular , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Cones de Crescimento/fisiologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Neuritos/fisiologia , Fosfoproteínas/metabolismo , Fosforilação , Isoformas de Proteínas/biossíntese , Estrutura Terciária de Proteína , Tirosina/metabolismo
16.
Mol Cell Neurosci ; 35(1): 57-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17383198

RESUMO

Several studies suggest a role for the amyloid precursor protein (APP) in neurite outgrowth and synaptogenesis, but the downstream interactions that mediate the function of APP during neuron development are unknown. By introducing interaction-deficient FE65 into cultured hippocampal neurons using adenovirus, we show that a complex including APP, FE65 and an additional protein is involved in neurite outgrowth at early stages of neuronal development. Both FE65 that is unable to interact with APP (PID2 mutants) or a WW mutant increased axon branching. Although the FE65 mutants did not affect total neurite output, both mutants decreased axon segment length, consistent with an overall slowing of axonal growth cones. FE65 mutants did not alter the localization of either APP or FE65 in axonal growth cones, suggesting that the effects on neurite outgrowth are achieved by alterations in local complex formation within the axonal growth cone.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Axônios/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Forma Celular/fisiologia , Células Cultivadas , Citosol/metabolismo , Dendritos/metabolismo , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Camundongos , Mutagênese Sítio-Dirigida , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura
17.
PLoS One ; 1: e53, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183683

RESUMO

BACKGROUND: The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS: We identify PIASgamma as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASgamma, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASgamma-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASgamma and Topoisomerase II. CONCLUSIONS: PIASgamma directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASgamma in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas Inibidoras de STAT Ativados/fisiologia , Anáfase , Aurora Quinases , Sequência de Bases , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Células HeLa , Humanos , Proteínas Mad2 , Metáfase , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Coesinas
18.
J Neurosci ; 26(7): 2132-9, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16481446

RESUMO

Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast two-hybrid studies predict that Lis1 binds directly to dynein heavy chains (Sasaki et al., 2000; Tai et al., 2002), but the mechanistic significance of this interaction is not well understood. We now report that recombinant Lis1 binds to native brain dynein and significantly increases the microtubule-stimulated enzymatic activity of dynein in vitro. Lis1 does this without increasing the proportion of dynein that binds to microtubules, indicating that Lis1 influences enzymatic activity rather than microtubule association. Dynein stimulation in vitro is not a generic feature of microtubule-associated proteins, because tau did not stimulate dynein. To our knowledge, this is the first indication that Lis1 or any other factor directly modulates the enzymatic activity of cytoplasmic dynein. Lis1 must be able to homodimerize to stimulate dynein, because a C-terminal fragment (containing the dynein interaction site but missing the self-association domain) was unable to stimulate dynein. Binding and colocalization studies indicate that Lis1 does not interact with all dynein complexes found in the brain. We propose a model in which Lis1 stimulates the activity of a subset of motors, which could be particularly important during neuronal migration and long-distance axonal transport.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase , Processamento Alternativo , Animais , Transporte Axonal/fisiologia , Encéfalo/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Variação Genética , Camundongos , Proteínas Recombinantes/metabolismo , Spodoptera , Transfecção
19.
Neuron ; 43(1): 81-94, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15233919

RESUMO

Arp2/3 is an actin binding complex that is enriched in the peripheral lamellipodia of fibroblasts, where it forms a network of short, branched actin filaments, generating the protrusive force that extends lamellipodia and drives fibroblast motility. Although it has been assumed that Arp2/3 would play a similar role in growth cones, our studies indicate that Arp2/3 is enriched in the central, not the peripheral, region of growth cones and that the growth cone periphery contains few branched actin filaments. Arp2/3 inhibition in fibroblasts severely disrupts actin organization and membrane protrusion. In contrast, Arp2/3 inhibition in growth cones minimally affects actin organization and does not inhibit lamellipodia protrusion or de novo filopodia formation. Surprisingly, Arp2/3 inhibition significantly enhances axon elongation and causes defects in growth cone guidance. These results indicate that Arp2/3 is a negative regulator of growth cone translocation.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/genética , Proteínas do Citoesqueleto/fisiologia , Cones de Crescimento/metabolismo , Sistema Nervoso/embriologia , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Sequência de Aminoácidos/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Células Cultivadas , Proteínas do Citoesqueleto/genética , Retroalimentação Fisiológica/genética , Feto , Proteínas de Fluorescência Verde , Cones de Crescimento/ultraestrutura , Proteínas Luminescentes , Substâncias Macromoleculares , Camundongos , Microtúbulos/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura
20.
Neuron ; 42(1): 37-49, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15066263

RESUMO

Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Transporte/fisiologia , Moléculas de Adesão Celular/fisiologia , Fatores de Crescimento Neural/fisiologia , Neurônios/fisiologia , Fosfoproteínas/fisiologia , Pseudópodes/fisiologia , Citoesqueleto de Actina/metabolismo , Análise de Variância , Animais , Anticorpos/farmacologia , Proteínas Sanguíneas/metabolismo , Western Blotting/métodos , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Células Cultivadas , Córtex Cerebral/citologia , Galinhas , Colforsina/farmacologia , Citocalasina D/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Hipocampo/citologia , Humanos , Imuno-Histoquímica/métodos , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos , Microscopia Eletrônica/métodos , Mitocôndrias/metabolismo , Netrina-1 , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação , Testes de Precipitina/métodos , Estrutura Terciária de Proteína/genética , Pseudópodes/efeitos dos fármacos , Pseudópodes/ultraestrutura , Fatores de Tempo , Transfecção/métodos , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...