Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (197)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37590536

RESUMO

Necrotizing enterocolitis (NEC) is a severe and potentially fatal intestinal disease that has been difficult to study due to its complex pathogenesis, which remains incompletely understood. The pathophysiology of NEC includes disruption of intestinal tight junctions, increased gut barrier permeability, epithelial cell death, microbial dysbiosis, and dysregulated inflammation. Traditional tools to study NEC include animal models, cell lines, and human or mouse intestinal organoids. While studies using those model systems have improved the field's understanding of disease pathophysiology, their ability to recapitulate the complexity of human NEC is limited. An improved in vitro model of NEC using microfluidic technology, named NEC-on-a-chip, has now been developed. The NEC-on-a-chip model consists of a microfluidic device seeded with intestinal enteroids derived from a preterm neonate, co-cultured with human endothelial cells and the microbiome from an infant with severe NEC. This model is a valuable tool for mechanistic studies into the pathophysiology of NEC and a new resource for drug discovery testing for neonatal intestinal diseases. In this manuscript, a detailed description of the NEC-on-a-chip model will be provided.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Microbiota , Animais , Lactente , Camundongos , Humanos , Recém-Nascido , Disbiose , Células Endoteliais , Microfluídica
2.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881475

RESUMO

Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease.


Assuntos
Células Endoteliais , Enterocolite Necrosante , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Mucosa Intestinal , Dispositivos Lab-On-A-Chip
3.
Commun Biol ; 5(1): 47, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022507

RESUMO

Lysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.


Assuntos
Antígenos de Neoplasias/genética , Morte Celular , Células Epiteliais/fisiologia , Serpinas/genética , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Serpinas/metabolismo
4.
Cell Rep Med ; 2(6): 100320, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195684

RESUMO

Necrotizing enterocolitis (NEC) is a deadly intestinal inflammatory disorder that primarily affects premature infants and lacks adequate therapeutics. Interleukin (IL)-22 plays a critical role in gut barrier maintenance, promoting epithelial regeneration, and controlling intestinal inflammation in adult animal models. However, the importance of IL-22 signaling in neonates during NEC remains unknown. We investigated the role of IL-22 in the neonatal intestine under homeostatic and inflammatory conditions by using a mouse model of NEC. Our data reveal that Il22 expression in neonatal murine intestine is negligible until weaning, and both human and murine neonates lack IL-22 production during NEC. Mice deficient in IL-22 or lacking the IL-22 receptor in the intestine display a similar susceptibility to NEC, consistent with the lack of endogenous IL-22 during development. Strikingly, treatment with recombinant IL-22 during NEC substantially reduces inflammation and enhances epithelial regeneration. These findings may provide a new therapeutic strategy to attenuate NEC.


Assuntos
Enterocolite Necrosante/imunologia , Interleucinas/genética , Mucosa Intestinal/imunologia , Proteínas Recombinantes/farmacologia , Regeneração/imunologia , Animais , Animais Recém-Nascidos , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Modelos Animais de Doenças , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Doenças do Recém-Nascido/imunologia , Doenças do Recém-Nascido/microbiologia , Doenças do Recém-Nascido/patologia , Recém-Nascido Prematuro , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucinas/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Regeneração/genética , Transdução de Sinais , Desmame , Interleucina 22
5.
Methods Mol Biol ; 2321: 101-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048010

RESUMO

Necrotizing enterocolitis (NEC) is an acute inflammatory disease that unforeseeably develops in very low birth weight premature infants. NEC is characterized by impairment of the intestinal barrier resulting in intestinal necrosis and multisystem organ failure. Animal models of NEC have contributed significantly to a better understanding of the underlying molecular mechanisms of the disease and facilitated the exploration of potential new therapeutic strategies. Here, we provide a detailed protocol that recapitulates some of the main histological and transcriptional features of human NEC in newborn mice.


Assuntos
Enterocolite Necrosante/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Recém-Nascido , Doenças do Recém-Nascido/patologia , Inflamação/patologia , Mucosa Intestinal/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nascimento Prematuro/patologia , Transcrição Gênica/fisiologia
6.
Immunohorizons ; 5(4): 193-209, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906960

RESUMO

Necrotizing enterocolitis (NEC) causes significant morbidity and mortality in premature infants; therefore, the identification of therapeutic and preventative strategies against NEC remains a high priority. The ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) is well known to contribute to the regulation of intestinal microbial communities and amelioration of intestinal inflammation. However, the role of AhR signaling in NEC is unclear. Experimental NEC was induced in 4-d-old wild-type mice or mice lacking AhR expression in the intestinal epithelial cells or AhR expression in CD11c+ cells (AhRΔCD11c) by subjecting animals to twice daily hypoxic stress and gavage feeding with formula supplemented with LPS and enteric bacteria. During NEC, compared with wild-type mice treated with vehicle, littermates treated with an AhR proligand, indole-3-carbinol, had reduced expression of Il1b and Marco, a scavenger receptor that mediates dendritic cell activation and the recognition and clearance of bacterial pathogens by macrophages. Furthermore, indole-3-carbinol treatment led to the downregulation of genes involved in cytokine and chemokine, as revealed by pathway enrichment analysis. AhR expression in the intestinal epithelial cells and their cre-negative mouse littermates were similarly susceptible to experimental NEC, whereas AhRΔCD11c mice with NEC exhibited heightened inflammatory responses compared with their cre-negative mouse littermates. In seeking to determine the mechanisms involved in this increased inflammatory response, we identified the Tim-4- monocyte-dependent subset of macrophages as increased in AhRΔCD11c mice compared with their cre-negative littermates. Taken together, these findings demonstrate the potential for AhR ligands as a novel immunotherapeutic approach to the management of this devastating disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Enterocolite Necrosante/tratamento farmacológico , Indóis/farmacologia , Mucosa Intestinal/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Humanos , Indóis/uso terapêutico , Interleucina-1beta/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
7.
Sci Rep ; 10(1): 3842, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123209

RESUMO

The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.


Assuntos
Capilares/crescimento & desenvolvimento , Técnicas de Cocultura/instrumentação , Intestino Delgado/citologia , Dispositivos Lab-On-A-Chip , Miofibroblastos/citologia , Humanos , Miofibroblastos/metabolismo , Oxigênio/metabolismo , Perfusão
8.
Pediatr Res ; 88(1): 66-76, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242501

RESUMO

BACKGROUND: Preterm infants are susceptible to unique pathology due to their immaturity. Mouse models are commonly used to study immature intestinal disease, including necrotizing enterocolitis (NEC). Current NEC models are performed at a variety of ages, but data directly comparing intestinal developmental stage equivalency between mice and humans are lacking. METHODS: Small intestines were harvested from C57BL/6 mice at 3-4 days intervals from birth to P28 (n = 8 at each age). Preterm human small intestine samples representing 17-23 weeks of completed gestation were obtained from the University of Pittsburgh Health Sciences Tissue Bank, and at term gestation during reanastamoses after resection for NEC (n = 4-7 at each age). Quantification of intestinal epithelial cell types and messenger RNA for marker genes were evaluated on both species. RESULTS: Overall, murine and human developmental trends over time are markedly similar. Murine intestine prior to P10 is most similar to human fetal intestine prior to viability. Murine intestine at P14 is most similar to human intestine at 22-23 weeks completed gestation, and P28 murine intestine is most similar to human term intestine. CONCLUSION: Use of C57BL/6J mice to model the human immature intestine is reasonable, but the age of mouse chosen is a critical factor in model development.


Assuntos
Epitélio/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/crescimento & desenvolvimento , Animais , Enterocolite Necrosante/metabolismo , Epitélio/patologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Homeostase , Humanos , Enteropatias/metabolismo , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL
9.
J Vis Exp ; (132)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29553558

RESUMO

Human small intestinal enteroids are derived from the crypts and when grown in a stem cell niche contain all of the epithelial cell types. The ability to establish human enteroid ex vivo culture systems are important to model intestinal pathophysiology and to study the particular cellular responses involved. In recent years, enteroids from mice and humans are being cultured, passaged, and banked away for future use in several laboratories across the world. This enteroid platform can be used to test the effects of various treatments and drugs and what effects are exerted on different cell types in the intestine. Here, a protocol for establishing primary stem cell-derived small intestinal enteroids derived from neonatal mice and premature human intestine is provided. Moreover, this enteroid culture system was utilized to test the effects of species-specific breast milk. Mouse breast milk can be obtained efficiently using a modified human breast pump and expressed mouse milk can then be used for further research experiments. We now demonstrate the effects of expressed mouse, human, and donor breast milk on the growth and proliferation of enteroids derived from neonatal mice or premature human small intestine.


Assuntos
Técnicas Citológicas/métodos , Enterócitos/citologia , Intestino Delgado/citologia , Leite , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Proliferação de Células/fisiologia , Meios de Cultura , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano
10.
Viruses ; 10(3)2018 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534451

RESUMO

Studies on the intestinal epithelial response to viral infection have previously been limited by the absence of in vitro human intestinal models that recapitulate the multicellular complexity of the gastrointestinal tract. Recent technological advances have led to the development of "mini-intestine" models, which mimic the diverse cellular nature and physiological activity of the small intestine. Utilizing adult or embryonic intestinal tissue, enteroid and organoid systems, respectively, represent an opportunity to effectively model cellular differentiation, proliferation, and interactions that are specific to the specialized environment of the intestine. Enteroid and organoid systems represent a significant advantage over traditional in vitro methods because they model the structure and function of the small intestine while also maintaining the genetic identity of the host. These more physiologic models also allow for novel approaches to investigate the interaction of enteric viruses with the gastrointestinal tract, making them ideal to study the complexities of host-pathogen interactions in this unique cellular environment. This review aims to provide a summary on the use of human enteroid and organoid systems as models to study virus pathogenesis.


Assuntos
Trato Gastrointestinal/virologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Células-Tronco/metabolismo , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/virologia , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...