Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 123(5): 572-583, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340722

RESUMO

Nucleic acid double helices in their DNA, RNA, and DNA-RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist-stretch coupling for DNA, RNA, and hybrid duplexes between 7°C and 47°C. The results are based on all-atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist-stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/°C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/°C, and smaller values are found for the other elastic moduli. The twist-stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two-state model of DNA flexibility is discussed. Our work provides temperature-dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.


Assuntos
DNA , RNA , RNA/química , Conformação de Ácido Nucleico , Temperatura , DNA/química , Elasticidade
2.
J Phys Chem B ; 128(3): 664-675, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197365

RESUMO

RNA plays critical roles in the transmission and regulation of genetic information and is increasingly used in biomedical and biotechnological applications. Functional RNAs contain extended double-stranded regions, and the structure of double-stranded RNA (dsRNA) has been revealed at high resolution. However, the dependence of the properties of the RNA double helix on environmental effects, notably temperature, is still poorly understood. Here, we use single-molecule magnetic tweezer measurements to determine the dependence of the dsRNA twist on temperature. We find that dsRNA unwinds with increasing temperature, even more than DNA, with ΔTwRNA = -14.4 ± 0.7°/(°C·kbp), compared to ΔTwDNA = -11.0 ± 1.2°/(°C·kbp). All-atom molecular dynamics (MD) simulations using a range of nucleic acid force fields, ion parameters, and water models correctly predict that dsRNA unwinds with rising temperature but significantly underestimate the magnitude of the effect. These MD data, together with additional MD simulations involving DNA and DNA-RNA hybrid duplexes, reveal a linear correlation between the twist temperature decrease and the helical rise, in line with DNA but at variance with RNA experimental data. We speculate that this discrepancy might be caused by some unknown bias in the RNA force fields tested or by as yet undiscovered transient alternative structures in the RNA duplex. Our results provide a baseline to model more complex RNA assemblies and to test and develop new parametrizations for RNA simulations. They may also inspire physical models of the temperature-dependent dsRNA structure.


Assuntos
Simulação de Dinâmica Molecular , RNA de Cadeia Dupla , Conformação de Ácido Nucleico , Temperatura , RNA/química , DNA/química , Fenômenos Magnéticos
3.
Biophys J ; 121(5): 705-714, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122735

RESUMO

Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.


Assuntos
Simulação de Dinâmica Molecular , RNA , Sítios de Ligação , Conformação de Ácido Nucleico , RNA/química , Ribossomos/metabolismo
4.
J Chem Theory Comput ; 16(9): 5972-5981, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810397

RESUMO

The pyrimidine-pyrimidone (6-4) photoproduct (64-PP) is an important photoinduced DNA lesion constituting a mutational signature for melanoma. The structural impact of 64-PP on DNA complexed with histones affects the lesion mutagenicity and repair but remains poorly understood. Here we investigate the conformational dynamics of DNA-containing 64-PP within the nucleosome core particle by atomic-resolution molecular dynamics simulations and multiscale data analysis. We demonstrate that the histone core exerts important mechanical restraints that largely decrease global DNA structural fluctuations. However, the local DNA flexibility at the damaged site is enhanced due to imperfect structural adaptation to restraints imposed by the histone core. If 64-PP faces the histone core and is therefore not directly accessible by the repair protein, the complementary strand facing the solvent is deformed and exhibits higher flexibility than the corresponding strand in a naked, undamaged DNA. This may serve as an initial recognition signal for repair. Our simulations also pinpoint the structural role of proximal residues from the truncated histone tails.


Assuntos
DNA/química , Histonas/química , Simulação de Dinâmica Molecular , Dímeros de Pirimidina/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Raios Ultravioleta
5.
J Chem Theory Comput ; 16(4): 2857-2863, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32196331

RESUMO

Changes in the structure of double-stranded (ds) DNA with temperature affect processes in thermophilic organisms and are important for nanotechnological applications. Here we investigate temperature-dependent conformational changes of dsDNA at the scale of several helical turns and at the base pair step level, inferred from extensive all-atom molecular dynamics simulations of DNA at temperatures from 7 to 47 °C. Our results suggest that, contrary to twist, the overall bending of dsDNA without A-tracts depends only very weakly on temperature, due to the mutual compensation of directional local bends. Investigating DNA length as a function of temperature, we find that the sum of distances between base pair centers (the wire length) exhibits a large expansion coefficient of ∼2 × 10-4 °C-1, similar to values reported for thermoplastic materials. However, the wire length increase with temperature is absorbed by expanding helix radius, so the length measured along the helical axis (the spring length) seems to suggest a very small negative thermal expansion coefficient. These compensatory mechanisms contribute to thermal stability of DNA structure on the biologically relevant scale of tens of base pairs and longer.


Assuntos
DNA/química , Estrutura Molecular , Temperatura
6.
Biophys J ; 118(7): 1514-1516, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171419
7.
Nucleic Acids Res ; 46(15): 7998-8009, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30053087

RESUMO

DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. Quantitative understanding and optimization of its functions requires precise experimental characterization and accurate modeling of DNA properties. A defining feature of DNA is its helicity. DNA unwinds with increasing temperature, even for temperatures well below the melting temperature. However, accurate quantitation of DNA unwinding under external forces and a microscopic understanding of the corresponding structural changes are currently lacking. Here we combine single-molecule magnetic tweezers measurements with atomistic molecular dynamics and coarse-grained simulations to obtain a comprehensive view of the temperature dependence of DNA twist. Experimentally, we find that DNA twist changes by ΔTw(T) = (-11.0 ± 1.2)°/(°C·kbp), independent of applied force, in the range of forces where torque-induced melting is negligible. Our atomistic simulations predict ΔTw(T) = (-11.1 ± 0.3)°/(°C·kbp), in quantitative agreement with experiments, and suggest that the untwisting of DNA with temperature is predominantly due to changes in DNA structure for defined backbone substates, while the effects of changes in substate populations are minor. Coarse-grained simulations using the oxDNA framework yield a value of ΔTw(T) = (-6.4 ± 0.2)°/(°C·kbp) in semi-quantitative agreement with experiments.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Temperatura , Simulação por Computador , Campos Magnéticos , Simulação de Dinâmica Molecular
8.
J Chem Theory Comput ; 13(7): 3359-3371, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28617589

RESUMO

C-loop is an internal loop motif found in the ribosome and used in artificial nanostructures. While its geometry has been partially characterized, its mechanical properties remain elusive. Here we propose a method to evaluate global shape and stiffness of an internal loop. The loop is flanked by short A-RNA helices modeled as rigid bodies. Their relative rotation and displacement are fully described by six interhelical coordinates. The deformation energy of the loop is assumed to be a general quadratic function of the interhelical coordinates. The model parameters for isolated C-loops are inferred from unrestrained all-atom molecular dynamics simulations. C-loops exhibit high twist as reported earlier, but also a bend and a lateral displacement of the flanking helices. Their bending stiffness and lateral displacement stiffness are nearly isotropic and similar to the control A-RNA duplexes. Nevertheless, we found systematic variations with the C-loop position in the ribosome and the organism of origin. The results characterize global properties of C-loops in the full six-dimensional interhelical space and enable one to choose an optimally stiff C-loop for use in a nanostructure. Our approach can be readily applied to other internal loops and extended to more complex structural motifs.


Assuntos
RNA Ribossômico/química , Entropia , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
9.
J Chem Inf Model ; 57(2): 275-287, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28059516

RESUMO

Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence-averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 µs of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0εζOL1χOL4, parmbsc1, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BII substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.


Assuntos
DNA de Forma B/química , DNA de Forma B/genética , Simulação de Dinâmica Molecular , Oligonucleotídeos/química , Oligonucleotídeos/genética , Pareamento de Bases , Sequência de Bases
10.
Nucleic Acids Res ; 45(4): 2188-2195, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27986856

RESUMO

Oxidatively-generated interstrand cross-links rank among the most deleterious DNA lesions. They originate from abasic sites, whose aldehyde group can form a covalent adduct after condensation with the exocyclic amino group of purines, sometimes with remarkably high yields. We use explicit solvent molecular dynamics simulations to unravel the structures and mechanical properties of two DNA sequences containing an interstrand cross-link. Our simulations palliate the absence of experimental structural and stiffness information for such DNA lesions and provide an unprecedented insight into the DNA embedding of lesions that represent a major challenge for DNA replication, transcription and gene regulation by preventing strand separation. Our results based on quantum chemical calculations also suggest that the embedding of the ICL within the duplex can tune the reaction profile, and hence can be responsible for the high difference in yields of formation.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Algoritmos , Modelos Moleculares , Estrutura Molecular
11.
Nucleic Acids Res ; 44(9): 4052-66, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27084952

RESUMO

We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 µs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 µs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.


Assuntos
DNA de Forma B/química , DNA de Forma B/ultraestrutura , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Modelos Moleculares , Cloreto de Potássio/química , Cloreto de Sódio/química
12.
Biophys J ; 110(4): 874-6, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26827073

RESUMO

A recent study described an allosteric effect in which the binding of a protein to DNA is influenced by another protein bound nearby. The effect shows a periodicity of ∼10 basepairs and decays with increasing protein-protein distance. As a mechanistic explanation, the authors reported a similar periodic, decaying pattern of the correlation coefficient between major groove widths inferred from a shorter molecular dynamics simulation. Here we show that in a state-of-the-art, microsecond-long simulation of the same DNA sequence, the periodicity of the correlation coefficient is not observed. To study the problem further, we extend an earlier mechanical model of DNA allostery based on constrained minimization of effective quadratic deformation energy of the DNA. We demonstrate that, if the constraints mimicking the bound proteins are properly applied, the periodicity in the binding energy is indeed recovered.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Regulação Alostérica
13.
Nucleic Acids Res ; 43(21): 10143-56, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26464435

RESUMO

Double stranded helical DNA and RNA are flexible molecules that can undergo global conformational fluctuations. Their bending, twisting and stretching deformabilities are of similar magnitude. However, recent single-molecule experiments revealed a striking qualitative difference indicating an opposite sign for the twist-stretch couplings of dsDNA and dsRNA [Lipfert et al. 2014. Proc. Natl. Acad. Sci. U.S.A. 111, 15408] that is not explained by existing models. Employing unconstrained Molecular Dynamics (MD) simulations we are able to reproduce the qualitatively different twist-stretch coupling for dsDNA and dsRNA in semi-quantitative agreement with experiment. Similar results are also found in simulations that include an external torque to induce over- or unwinding of DNA and RNA. Detailed analysis of the helical deformations coupled to twist indicate that the interplay of helical rise, base pair inclination and displacement from the helix axis upon twist changes are responsible for the different twist-stretch correlations. Overwinding of RNA results in more compact conformations with a narrower major groove and consequently reduced helical extension. Overwinding of DNA decreases the size of the minor groove and the resulting positive base pair inclination leads to a slender and more extended helical structure.


Assuntos
DNA/química , RNA de Cadeia Dupla/química , Pareamento de Bases , Fenômenos Biomecânicos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Torque
14.
J Phys Condens Matter ; 27(32): 323102, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26194779

RESUMO

Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.


Assuntos
DNA/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Animais , Humanos , Conformação Molecular , Nanotecnologia , Biologia de Sistemas
15.
Biochemistry ; 54(5): 1259-67, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25600505

RESUMO

Oxidatively generated complex DNA lesions occur more rarely than single-nucleotide defects, yet they play an important role in carcinogenesis and aging diseases because they have proved to be more mutagenic than simple lesions. Whereas their formation pathways are rather well understood, the field suffers from the absence of structural data that are crucial for interpreting the lack of repair. No experimental structures are available for oligonucleotides featuring such a lesion. Hence, the detailed structural basis of such damaged duplexes has remained elusive. We propose the use of explicit solvent molecular dynamics simulations to build up damaged oligonucleotides containing two intrastrand cross-link defects, namely, the guanine-thymine and guanine-cytosine defects. Each of these lesions, G[8-5m]T and G[8-5]C, is placed in the middle of a dodecameric sequence, which undergoes an important structural rearrangement that we monitor and analyze. In both duplexes, the structural evolution is dictated by the more favorable stacking of guanine G6, which aims to restore π-stacking with the 3' purine nucleobase. Subsequently, transient formation of hydrogen bonds with a strand shifting is observed. Our simulations are combined with density functional theory to rationalize the structural evolution. We report converging computational evidence that the G[8-5m]T- and G[8-5]C-containing structures evolve toward "abasic-like" duplexes, with a stabilization of the interstrand pairing noncovalent interactions. Meanwhile, both lesions restore B-helicity within tens of nanoseconds. The identification of plausible structures characterizes the last hydrogen abstraction step toward the formation of such defects as a non-innocent chemical reaction.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Oligonucleotídeos/química , Oxirredução
16.
Biopolymers ; 103(1): 23-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25130987

RESUMO

Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O(6)-alkylguanin-DNA-Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O(6)-alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O(6)-methyl-guanine (O(6)-MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O(6)-MeG:C or O(6)-MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O(6)-MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O(6)-MeG:C or O(6)-MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes.


Assuntos
DNA/química , Guanina/química , Alquilação , Dano ao DNA , Reparo do DNA , Simulação de Dinâmica Molecular
17.
Nucleic Acids Res ; 42(19): 12272-83, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25260586

RESUMO

We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.


Assuntos
DNA de Forma B/química , Pareamento de Bases , Sequência de Bases , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
18.
Nucleic Acids Res ; 42(11): 7383-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24829460

RESUMO

A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts.


Assuntos
DNA/química , Nucleossomos/química , Adenina/química , Sequência de Bases , Fenômenos Biomecânicos , Entropia , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Poli A/química
19.
J Phys Chem Lett ; 5(21): 3831-5, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278756

RESUMO

The importance of allosteric effects in DNA is becoming increasingly appreciated, but the underlying mechanisms remain poorly understood. In this work, we propose a general modeling framework to study DNA allostery. We describe DNA in a coarse-grained manner by intra-base pair and base pair step coordinates, complemented by groove widths. Quadratic deformation energy is assumed, yielding linear relations between the constraints and their effect. Model parameters are inferred from standard unrestrained, explicit-solvent molecular dynamics simulations of naked DNA. We applied the approach to study minor groove binding of diamidines and pyrrole-imidazole polyamides. The predicted DNA bending is in quantitative agreement with experiment and suggests that diamidine binding to the alternating TA sequence brings the DNA closer to the A-tract conformation, with potentially important functional consequences. The approach can be readily applied to other allosteric effects in DNA and generalized to model allostery in various molecular systems.

20.
J Chem Theory Comput ; 10(8): 3177-89, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26588288

RESUMO

Terminal base pairs of DNA and RNA molecules in solution are known to undergo frequent transient opening events (fraying). Accurate modeling of this process is important because of its involvement in nucleic acid end recognition and enzymatic catalysis. In this article, we describe fraying in molecular dynamics simulations with the ff99bsc0, ff99bsc0χOL3, and ff99bsc0χOL4 force fields, both for DNA and RNA molecules. Comparison with the experiment showed that while some features of fraying are consistent with the available data, others indicate potential problems with the force field description. In particular, multiple noncanonical structures are formed at the ends of the DNA and RNA duplexes. Among them are tWC/sugar edge pair, C-H edge/Watson-Crick pair, and stacked geometries, in which the terminal bases are stacked above each other. These structures usually appear within the first tens to hundreds of nanoseconds and substantially limit the usefulness of the remaining part of the simulation due to geometry distortions that are transferred to several neighboring base pairs ("end effects"). We show that stability of the noncanonical structures in ff99bsc0 may be partly linked to inaccurate glycosidic (χ) torsion potentials that overstabilize the syn region and allow for rapid anti to syn transitions. The RNA refined glycosidic torsion potential χOL3 provides an improved description and substantially more stable MD simulations of RNA molecules. In the case of DNA, the χOL4 correction gives only partial improvement. None of the tested force fields provide a satisfactory description of the terminal regions, indicating that further improvement is needed to achieve realistic modeling of fraying in DNA and RNA molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...