Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 100(3): 627-640, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31349380

RESUMO

Auxin concentration gradients are informative for the transduction of many developmental cues, triggering downstream gene expression and other responses. The generation of auxin gradients depends significantly on cell-to-cell auxin transport, which is supported by the activities of auxin efflux and influx carriers. However, at the level of individual plant cell, the co-ordination of auxin efflux and influx largely remains uncharacterized. We addressed this issue by analyzing the contribution of canonical PIN-FORMED (PIN) proteins to the carrier-mediated auxin efflux in Nicotiana tabacum L., cv. Bright Yellow (BY-2) tobacco cells. We show here that a majority of canonical NtPINs are transcribed in cultured cells and in planta. Cloning of NtPIN genes and their inducible overexpression in tobacco cells uncovered high auxin efflux activity of NtPIN11, accompanied by auxin starvation symptoms. Auxin transport parameters after NtPIN11 overexpression were further assessed using radiolabelled auxin accumulation and mathematical modelling. Unexpectedly, these experiments showed notable stimulation of auxin influx, which was accompanied by enhanced transcript levels of genes for a specific auxin influx carrier and by decreased transcript levels of other genes for auxin efflux carriers. A similar transcriptional response was observed upon removal of auxin from the culture medium, which resulted in decreased auxin efflux. Overall, our results revealed an auxin transport-based homeostatic mechanism for the maintenance of endogenous auxin levels. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://osf.io/ka97b/.


Assuntos
Ácidos Indolacéticos/metabolismo , Nicotiana/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Linhagem Celular , Homeostase , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Teóricos , Filogenia , Proteínas de Plantas/genética , Nicotiana/genética
2.
Plant Cell Rep ; 37(5): 809-818, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29502206

RESUMO

KEY MESSAGE: Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.


Assuntos
Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espaço Intracelular/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Células Vegetais/metabolismo , Prata/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ácidos Indolacéticos/metabolismo , Íons , Células Vegetais/efeitos dos fármacos
3.
Int J Mol Sci ; 18(11)2017 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109378

RESUMO

Coordination of plant development requires modulation of growth responses that are under control of the phytohormone auxin. PIN-FORMED plasma membrane proteins, involved in intercellular transport of the growth regulator, are key to the transmission of such auxin signals and subject to multilevel surveillance mechanisms, including reversible post-translational modifications. Apart from well-studied PIN protein modifications, namely phosphorylation and ubiquitylation, no further post-translational modifications have been described so far. Here, we focused on root-specific Arabidopsis PIN2 and explored functional implications of two evolutionary conserved cysteines, by a combination of in silico and molecular approaches. PIN2 sequence alignments and modeling predictions indicated that both cysteines are facing the cytoplasm and therefore would be accessible to redox status-controlled modifications. Notably, mutant pin2C-A alleles retained functionality, demonstrated by their ability to almost completely rescue defects of a pin2 null allele, whereas high resolution analysis of pin2C-A localization revealed increased intracellular accumulation, and altered protein distribution within plasma membrane micro-domains. The observed effects of cysteine replacements on root growth and PIN2 localization are consistent with a model in which redox status-dependent cysteine modifications participate in the regulation of PIN2 mobility, thereby fine-tuning polar auxin transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cisteína/genética , Ácidos Indolacéticos/metabolismo , Microdomínios da Membrana/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transporte Proteico
4.
Microsc Microanal ; 22(2): 290-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27041337

RESUMO

A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.


Assuntos
Membrana Celular/química , Processamento de Imagem Assistida por Computador/métodos , Proteínas de Membrana/análise , Microscopia Confocal/métodos , Células Vegetais/química , Análise Espectral/métodos , Nicotiana/química
5.
Protoplasma ; 253(6): 1391-1404, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26494150

RESUMO

Here we present an overview of what is known about endogenous plant compounds that act as inhibitors of hormonal transport processes in plants, about their identity and mechanism of action. We have also summarized commonly and less commonly used compounds of non-plant origin and synthetic drugs that show at least partial 'specificity' to transport or transporters of particular phytohormones. Our main attention is focused on the inhibitors of auxin transport. The urgent need to understand precisely the molecular mechanism of action of these inhibitors is highlighted.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Transporte Biológico , Modelos Biológicos , Proteínas de Plantas/metabolismo
6.
J Plant Physiol ; 171(6): 429-37, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594395

RESUMO

Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Técnicas de Cultura de Células , Cotilédone/citologia , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Hipocótilo/citologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Metaboloma , Ácidos Naftalenoacéticos/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/citologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nicotiana/citologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
7.
Methods Mol Biol ; 1056: 241-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24306878

RESUMO

The accumulation of radioactively labelled compounds in cells is frequently used for the determination of activities of various transport systems located at the plasma membrane, including the system for carrier-mediated transport of plant hormone auxin. The measurements of auxin transport could be performed on the tissue level as well, but for more precise quantitative analysis of activity of individual auxin carriers the model of plant cell cultures represents an invaluable tool. Here, we describe the method for the determination of the activities of auxin influx and efflux carriers in plant cells grown in a suspension using radiolabelled synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA). By making use of specific inhibitors of active auxin influx and efflux, as well as cell lines overexpressing or silencing particular auxin carriers, this method allows the determination of kinetic parameters of auxin flow across the plasma membrane and the activity of those carriers.


Assuntos
Ácidos Indolacéticos/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Células Cultivadas , Cinética , Análise do Fluxo Metabólico , Nicotiana/citologia , Nicotiana/metabolismo
8.
BMC Plant Biol ; 13: 20, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379388

RESUMO

BACKGROUND: Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. RESULTS: We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. CONCLUSIONS: This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin.


Assuntos
Ácidos Indolacéticos/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
9.
J Exp Bot ; 63(10): 3815-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22438304

RESUMO

The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.


Assuntos
Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Nicotiana/química , Nicotiana/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Transporte Biológico , Células Cultivadas , Modelos Teóricos , Naftalenos/química , Naftalenos/metabolismo , Nicotiana/citologia
10.
J Exp Bot ; 61(13): 3589-98, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20595238

RESUMO

The phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development. However, the exact mechanism of action of auxin efflux and influx inhibitors has not been fully elucidated. In this report, the mechanism of action of the auxin influx inhibitors (1-naphthoxyacetic acid (1-NOA), 2-naphthoxyacetic acid (2-NOA), and 3-chloro-4-hydroxyphenylacetic acid (CHPAA)) is examined by direct measurements of auxin accumulation, cellular phenotypic analysis, as well as by localization studies of Arabidopsis thaliana L. auxin carriers heterologously expressed in Nicotiana tabacum L., cv. Bright Yellow cell suspensions. The mode of action of 1-NOA, 2-NOA, and CHPAA has been shown to be linked with the dynamics of the plasma membrane. The most potent inhibitor, 1-NOA, blocked the activities of both auxin influx and efflux carriers, whereas 2-NOA and CHPAA at the same concentration preferentially inhibited auxin influx. The results suggest that these, previously unknown, activities of putative auxin influx inhibitors regulate overall auxin transport across the plasma membrane depending on the dynamics of particular membrane vesicles.


Assuntos
Membrana Celular/efeitos dos fármacos , Glicolatos/farmacologia , Ácidos Indolacéticos/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Fenilacetatos/farmacologia , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Células
11.
Plant Physiol ; 146(3): 1128-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18184737

RESUMO

We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Prunus/enzimologia , Ácido 2,4-Diclorofenoxiacético , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , DNA Complementar , Topos Floridos/metabolismo , Expressão Gênica , Teste de Complementação Genética , Gravitropismo/fisiologia , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Prunus/genética , Nicotiana/enzimologia , Nicotiana/genética
12.
Carcinogenesis ; 24(10): 1695-703, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12869422

RESUMO

Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been associated with the development of urothelial cancer in humans. Understanding which human enzymes are involved in AA metabolism is important in the assessment of an individual's susceptibility to this carcinogen. Using the 32P-postlabeling assay we examined the ability of enzymes of cytosolic samples from 10 different human livers and from one human kidney to activate the major component of the plant extract AA, 8-methoxy- 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI), to metabolites forming adducts in DNA. Cytosolic fractions of both organs generated AAI-DNA adduct patterns reproducing those found in renal tissues from humans exposed to AA. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II, indicating a possible demethoxylation reaction of AAI, were identified as AA-DNA adducts formed from AAI by all human hepatic and renal cytosols. To define the role of human cytosolic reductases in the activation of AAI, we investigated the modulation of AAI-DNA adduct formation by cofactors or selective inhibitors of the NAD(P)H:quinone oxidoreductase (NQO1), xanthine oxidase (XO) and aldehyde oxidase. We also determined whether the activities of NQO1 and XO in different human hepatic cytosolic samples correlated with the levels of AAI-DNA adducts formed by the same cytosolic samples. Based on these studies, we attribute most of the activation of AA in human cytosols to NQO1, although a role of cytosolic XO cannot be ruled out. With purified NQO1 from rat liver and kidney and XO from buttermilk, the major role of NQO1 in the formation of AAI-DNA adducts was confirmed. The orientation of AAI in the active site of human NQO1 was predicted from molecular modeling based on published X-ray structures. The results demonstrate for the first time the potential of human NQO1 to activate AAI by nitroreduction.


Assuntos
Ácidos Aristolóquicos/metabolismo , Carcinógenos/metabolismo , Citosol/enzimologia , Adutos de DNA/análise , NAD(P)H Desidrogenase (Quinona)/metabolismo , Aldeído Oxidase/metabolismo , Animais , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacocinética , Biotransformação , Carcinógenos/química , Carcinógenos/farmacocinética , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/metabolismo , Humanos , Rim/enzimologia , Fígado/enzimologia , Masculino , Modelos Moleculares , NAD(P)H Desidrogenase (Quinona)/análise , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Ratos , Ratos Wistar , Xantina Oxidase/análise , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...