Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Bioeng Biotechnol ; 8: 538203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344427

RESUMO

The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.

3.
Front Med (Lausanne) ; 7: 496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984376

RESUMO

Visceral leishmaniasis (VL) is a severe disease caused by Leishmania infantum. Dogs are the parasite's main reservoir, favoring its transmission in the urban environment. The analysis of L. infantum from infected dogs contributes to the identification of more virulent parasites, thereby supporting basic and applied studies such as vaccinal and therapeutic strategies. We proposed the in vitro and in vivo characterization of L. infantum strains from naturally infected dogs from a VL endemic area based on an infectivity and pathogenicity analysis. DH82 canine macrophages were infected in vitro with different strains for infectivity analysis, showing distinct infectivity profiles. The strains that showed greater and lesser infectivity using in vitro analyses (616 and 614, respectively) were used to infect hamsters for pathogenicity analysis. The group infected with strain 616 showed 100% survival while the group infected with strain 614 showed 50% after seven months of follow up. Furthermore, the 614 strain induced more noticeable clinicopathological changes and biochemical abnormalities in liver function, along with high inflammation and parasite load in the liver and spleen. We confirmed high variability of infectivity and pathogenicity in L. infantum strains from infected dogs. The results support the belief that screening for L. infantum infectivity using in vitro experiments is inadequate when it comes to selecting the most pathogenic strain.

4.
Vet Parasitol ; 271: 87-97, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303211

RESUMO

The natural history of canine visceral leishmaniasis (CVL) has been well described, particularly with respect to the parasite load in different tissues and immunopathological changes according to the progression of clinical forms. The biomarkers evaluated in these studies provide support for the improvement of the tools used in developing vaccines against CVL. Thus, we describe the major studies using the dog model that supplies the rationale for including different biomarkers (tissue parasitism, histopathology, hematological changes, leucocytes immunophenotyping, cytokines patterns, and in vitroco-culture systems using purified T-cells subsets and macrophages infected with L. infantum) for immunogenicity and protection evaluations in phases I and II applied to pre-clinical and clinical vaccine trials against CVL. The search for biomarkers related to resistance or susceptibility has revealed a mixed cytokine profile with a prominent proinflammatory immune response as relevant for Leishmania replication at low levels as observed in asymptomatic dogs (highlighted by high levels of IFN-γ and TNF-α and decreased levels in IL-4, TGF-ß and IL-10). Furthermore, increased levels in CD4+ and CD8+ T-cell subsets, presenting intracytoplasmic proinflammatory cytokine balance, have been associated with a resistance profile against CVL. In contrast, a polyclonal B-cell expansion towards plasma cell differentiation contributes to high antibody production, which is the hallmark of symptomatic dogs associated with high susceptibility in CVL. Finally, the different studies used to analyze biomarkers have been incorporated into vaccine immunogenicity and protection evaluations. Those biomarkers identified as resistance or susceptibility markers in CVL have been used to evaluate the vaccine performance against L. infantum in a kennel trial conducted before the field trial in an area known to be endemic for visceral leishmaniasis. This rationale has been a guiding force in the testing and selection of the best vaccine candidates against CVL and provides a way for the veterinary industry to register commercial immunobiological products.


Assuntos
Biomarcadores/sangue , Doenças do Cão/sangue , Leishmaniose Visceral/veterinária , Animais , Biomarcadores/análise , Suscetibilidade a Doenças/metabolismo , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Cães , Leishmaniose Visceral/sangue , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Vacinas Protozoárias/imunologia
5.
Biomed Pharmacother ; 109: 610-620, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30399598

RESUMO

The occurrence of inflammation and protein malnutrition is an aggravating risk factor for morbidity and mortality in the clinical setting. The green propolis, a natural product made by Apis mellifera bees from Baccharis dracunculifolia resin, has therapeutic potential to modulate chronic inflammation. However, its effect on inflammation in an impaired nutritional status is not known. The aim of this study was to characterize the effects of the administration of the hydroalcoholic extract of the green propolis in the chronic inflammatory process of mice submitted to a low-protein diet. For this, we used the subcutaneous implantation of sponge disks as an inflammatory model and the animals were distributed in the following groups: standard protein diet (12% protein content), control treatment; standard protein diet, propolis treatment; low-protein diet (3% protein content), control treatment; low-protein diet, propolis treatment. Propolis was given daily at a dose of 500 mg/kg (p.o.) during a period of 7 or 15 days. Our main findings show that animals fed with standard protein diet and treated with propolis had low levels of red blood cells, hemoglobin, and hematocrit, with the subsequent reestablishment of these levels, in addition to monocyte count elevation and higher TNF levels after one week of treatment. In the low-protein diet group, the propolis treatment provided a significant recovery in weight and maintenance of total serum protein levels at the end of two weeks of treatment. Histological analysis showed propolis reduced the inflammatory infiltrate in the sponges of both standard and low-protein diet groups. In addition, the propolis extract presented antiangiogenic effect in both groups. Therefore, our data suggests that the hydroalcoholic extract of the green propolis promotes weight recovery and avoid the reduction of protein levels, in addition to inhibit inflammation and angiogenesis in animals fed with a low-protein diet.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Mediadores da Inflamação/metabolismo , Própole/administração & dosagem , Deficiência de Proteína/tratamento farmacológico , Deficiência de Proteína/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Etanol/administração & dosagem , Feminino , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Deficiência de Proteína/induzido quimicamente , Distribuição Aleatória , Água/administração & dosagem
6.
Parasit Vectors ; 9: 472, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27577735

RESUMO

BACKGROUND: In past years, many researchers have sought canine visceral leishmaniasis (CVL) prevention through the characterization of Leishmania antigens as vaccine candidates. Despite these efforts, there is still no efficient vaccine for CVL control. METHODS: In the present study, we performed a pre-clinical vaccine trial using BALB/c mice to compare the effects of the multicomponent LBSap vaccine with those of Leish-Tec® and Leishmune®. Blood was collected to determine the frequency of peripheral blood cells and to evaluate hematologic and immunophenotypic parameters. Liver and spleen samples were collected for parasitological quantification, and spleen samples were used to access the cytokine profile. RESULTS: When measuring total IgG and IgG1 anti-Leishmania levels after the third vaccination and L. infantum challenge, it was evident that all vaccines were able to induce humoral immune response. Regarding the innate immune response, increased levels of NK CD3(-)CD49(+) cells were the hallmark of all vaccinated groups, whereas only the Leish-Tec® group displayed a high frequency of CD14(+) monocytes after L. infantum challenge. Moreover, CD3(+)CD4(+) T cells were the main circulating lymphocytes induced after L. infantum challenge with all evaluated vaccines. Importantly, after L. infantum challenge, splenocytes from the Leishmune® vaccine produced high levels of IL-2, whereas a prominent type 1 immune response was the hallmark of the LBSap vaccine, which presented high levels of IL-2, IL-6, TNF-α, and IFN-γ. The efficacy analysis using real-time polymerase chain reaction demonstrated a reduction in the parasitism in the spleen (Leishmune®: 64 %; LBSap: 42 %; and Leish-Tec®: 36 %) and liver (Leishmune®: 71 %; LBSap: 62 %; and Leish-Tec®: 48 %). CONCLUSIONS: The dataset led to the conclusion that the LBSap vaccination was able to induce immune and efficacy profiles comparable with those of commercial vaccines, thus demonstrating its potential as a promising vaccine candidate for visceral leishmaniasis control.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania/imunologia , Leishmaniose Visceral/prevenção & controle , Vacinas Protozoárias/imunologia , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Imunoglobulina G/sangue , Leishmania/metabolismo , Fígado/parasitologia , Linfócitos/classificação , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/parasitologia
7.
Vet Parasitol ; 198(3-4): 371-81, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24129068

RESUMO

In the studies presented here, dogs were vaccinated against Leishmania (Leishmania) chagasi challenge infection using a preparation of Leishmania braziliensis promastigote proteins and saponin as adjuvant (LBSap). Vaccination with LBSap induced a prominent type 1 immune response that was characterized by increased levels of interleukin (IL-) 12 and interferon gamma (IFN-γ) production by peripheral blood mononuclear cells (PBMC) upon stimulation with soluble vaccine antigen. Importantly, results showed that this type of responsiveness was sustained after challenge infection; at day 90 and 885 after L. chagasi challenge infection, PBMCs from LBSap vaccinated dogs produced more IL-12, IFN-γ and concomitant nitric oxide (NO) when stimulated with Leishmania antigens as compared to PBMCs from respective control groups (saponin, LB- treated, or non-treated control dogs). Moreover, transforming growth factor (TGF)-ß decreased in the supernatant of SLcA-stimulated PBMCs in the LBSap group at 90 days. Bone marrow parasitological analysis revealed decreased frequency of parasitism in the presence of vaccine antigen. It is concluded that vaccination of dogs with LBSap vaccine induced a long-lasting type 1 immune response against L. chagasi challenge infection.


Assuntos
Citocinas/metabolismo , Vacinas contra Leishmaniose/imunologia , Leishmaniose/veterinária , Óxido Nítrico/metabolismo , Vacinação/veterinária , Animais , Antígenos de Protozoários/imunologia , Medula Óssea/parasitologia , Doenças do Cão/imunologia , Cães , Feminino , Leishmania/imunologia , Leishmaniose/imunologia , Vacinas contra Leishmaniose/normas , Leucócitos Mononucleares/imunologia , Masculino , Saliva/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...