Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38641325

RESUMO

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Assuntos
Exposição Ambiental , Expossoma , Humanos , Biologia Molecular
2.
J Hazard Mater ; 465: 133340, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147748

RESUMO

Cystic Fibrosis (CF) is a lethal genetic disorder caused by pathogenic mutations of the CFTR gene. CF patients show a high phenotypic variability of unknown origin. In this context, the present study was therefore dedicated to investigating the effects of acute exposure to air pollution on the pulmonary morbidity of a CF-like mice model. To achieve our aim, we developed a multidisciplinary approach and designed an innovative protocol using a simulation chamber reproducing multiphasic chemical processes at the laboratory. A particular attention was paid to modulate the composition of these simulated atmospheres, in terms of concentrations of gaseous and particulate pollutants. Exposure to simulated urban atmospheres induced mucus secretion and increased inflammatory biomarkers levels, oxidative stress as well as expression of lung remodeling actors in both WT and CF-like mice. The latter were more susceptible to develop such a response. Though we could not establish direct mechanistic link between biological responses and specific components, the type of immune response induced depended on the chemical composition of the atmospheres. Overall, we demonstrated that air pollution is an important determinant of CF-like lung phenotypic variability and emphasized the added value of considering air pollution with a multi-pollutant approach.


Assuntos
Poluição do Ar , Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Pulmão/patologia , Fenótipo , Modelos Animais de Doenças
3.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L447-L459, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529852

RESUMO

There is growing evidence suggesting that urban pollution has adverse effects on lung health. However, how urban pollution affects alveolar mesenchymal and epithelial stem cell niches remains unknown. This study aimed to determine how complex representative urban atmospheres alter alveolar stem cell niche properties. Mice were placed in an innovative chamber realistically simulating the atmosphere of a megalopolis, or "clean air," for 7 days. Lungs were collected, and fibroblasts and epithelial cells (EpCAM+) were isolated. Proliferative capacities of fibroblasts were tested by population doubling levels (PDL), and microarray analyses were performed. Fibroblasts and EpCAM+ cells from exposed, nonexposed, or naive mice were cocultured in organoid assays to assess the stem cell properties. Collagen deposition (Sirius red), lipofibroblasts (ADRP, COL1A1), myofibroblasts (αSMA), alveolar type 2 cells (AT2, SFTPC+), and alveolar differentiation intermediate cell [ADI, keratin-8-positive (KRT8+)/claudin-4-positive (CLDN4+)] markers were quantified in the lungs. Fibroblasts obtained from mice exposed to urban atmosphere had lower PDL and survival and produced fewer and smaller organoids. Microarray analysis showed a decrease of adipogenesis and an increase of genes associated with fibrosis, suggesting a lipofibroblast to myofibroblast transition. Collagen deposition and myofibroblast number increased in the lungs of urban atmosphere-exposed mice. AT2 number was reduced and associated with an increase in ADI cells KRT8+/CLDN4+. Furthermore, EpCAM+ cells from exposed mice also produced fewer and smaller organoids. In conclusion, urban atmosphere alters alveolar mesenchymal stem cell niche properties by inducing a lipofibroblast to myofibroblast shift. It also results in alveolar epithelial dysfunction and a fibrotic-like phenotype.NEW & NOTEWORTHY Urban pollution is known to have major adverse effects on lung health. To assess the effect of pollution on alveolar regeneration, we exposed adult mice to a simulated high-pollution urban atmosphere, using an innovative CESAM simulation chamber (Multiphase Atmospheric Experimental Simulation Chamber, https://cesam.cnrs.fr/). We demonstrated that urban atmosphere alters alveolar mesenchymal stem cell niche properties by inducing a lipofibroblast to myofibroblast shift and induces alveolar epithelial dysfunction.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Diferenciação Celular , Células-Tronco , Colágeno/metabolismo
4.
Sci Rep ; 13(1): 25, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646720

RESUMO

Small airway remodeling (SAR) is a key phenomenon of airflow obstruction in smokers, leading to chronic obstructive pulmonary disease (COPD). SAR results in an increased thickness of small airway walls, with a combination of peribronchiolar fibrosis with increased fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear but recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism of SAR. Our study was dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator, in a cigarette smoke (CS) model of SAR in mice, and to further precise if extra-telomeric effects of telomerase, involving oxidative stress modulation, could explain it. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65 starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-ß1 (TGF-ß1) expression in the small airway walls were examined. In addition, the effects of TA-65 treatment on TGF-ß expression, fibroblast-to-myofibroblast differentiation, reactive oxygen species (ROS) production and catalase expression and activity were evaluated in primary cultures of pulmonary fibroblasts and/or mouse embryonic fibroblasts in vitro. Exposure to CS during 4 weeks induced SAR in mice, characterized by small airway walls thickening and peribronchiolar fibrosis (increased deposition of collagen, expression of α-SMA in small airway walls), without mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-ß expression in vivo, the blockade of TGF-ß-induced myofibroblast differentiation, and the reduction of TGF-ß-induced ROS production that correlates with an increase of catalase expression and activity. Our findings demonstrate that telomerase is a critical player of SAR, probably through extra-telomeric anti-oxidant effects, and therefore provide new insights in the understanding and treatment of COPD pathogenesis.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Telomerase , Camundongos , Animais , Catalase/metabolismo , Telomerase/metabolismo , Remodelação das Vias Aéreas , Fumar Cigarros/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose
5.
Front Public Health ; 10: 978627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452951

RESUMO

Background: Most of the studies on cystic fibrosis (CF) focused on SARS-CoV-2 prevalence and suggested a low incidence of infection in this population. We aimed to assess the impact of the pandemic and related lockdown measures implemented in May 2020 in response to the first wave of SARS-CoV-2 infection on healthcare access, health, and behavior in CF patients. Methods: A national questionnaire opened online from May 15th, 2020 to June 11th, 2020 was completed by 751 CF-patients, aged 14 years and over. It comprised questions about access to healthcare, anxiety and depression, smoking, alcohol, drug and psychotropic drug consumption, adherence to CF treatment, and constraints. A semi-structured comprehensive interview was performed no later than 1 month after the end of the lockdown in 16 CF-patients. Results: The mean age of the population was 28.0 [interquartile range (IQR) 20.0-37.0] years old. More than 75% of in-person consultations scheduled during the lockdown were canceled. Alternatively, 27% were postponed, and telehealth consultations were proposed and accepted in almost 40% of cases. More than 75% of the scheduled physiotherapy sessions were canceled and replaced mainly by self-drainage. Annual follow-up clinic visits were consistently postponed whereas required hospitalizations at CF centers for exacerbation were maintained in most cases. While 43.2% CF-patients had signs of anxiety, 51.0% presented symptoms of depression, both associated with increased use of psychotic medications and inversely correlated to COVID-19 prevalence. Among the lower and lower middle classes, very little medical information was obtained or requested by the patient, participation to sports or other activities was low, while excessive home confinement and isolation were more frequent. In contrast, in the upper middle and upper classes, individuals solicitated help to their CF centre, had more physical activities, and maintained contact with friends or families. Conclusion: The first lockdown in France had only minimal impact on the management care of CF-patients but was associated with increased symptoms of anxiety and depression, together with behavioral changes that varied with social class. Trial registration: NCT04463628.


Assuntos
COVID-19 , Fibrose Cística , Humanos , Adulto Jovem , Adulto , COVID-19/epidemiologia , Pandemias , Fibrose Cística/epidemiologia , Fibrose Cística/terapia , SARS-CoV-2 , Controle de Doenças Transmissíveis , França/epidemiologia
6.
Eur Respir Rev ; 31(165)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35948393

RESUMO

COPD is a progressive and debilitating disease often diagnosed after 50 years of age, but more recent evidence suggests that its onset could originate very early on in life. In this context, exposure to air pollution appears to be a potential contributor. Although the potential role of air pollution as an early determinant of COPD is emerging, knowledge gaps still remain, including an accurate qualification of air pollutants (number of pollutants quantified and exact composition) or the "one exposure-one disease" concept, which might limit the current understanding. To fill these gaps, improvements in the field are needed, such as the use of atmosphere simulation chambers able to realistically reproduce the complexity of air pollution, consideration of the exposome, as well as improving exchanges between paediatricians and adult lung specialists to take advantage of reciprocal expertise. This review should lead to a better understanding of the current knowledge on air pollution as an early determinant of COPD, as well as identify the existing knowledge gaps and opportunities to fill them. Hopefully, this will lead to better prevention strategies to scale down the development of COPD in future generations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Humanos , Material Particulado/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia
7.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889616

RESUMO

Silicon dioxide (SiO2) is a mineral compound present in the Earth's crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica's toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.

8.
Front Physiol ; 13: 908230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721541

RESUMO

Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.

9.
Part Fibre Toxicol ; 19(1): 41, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706036

RESUMO

BACKGROUND: Emerging data indicate that prenatal exposure to air pollution may lead to higher susceptibility to several non-communicable diseases. Limited research has been conducted due to difficulties in modelling realistic air pollution exposure. In this study, pregnant mice were exposed from gestational day 10-17 to an atmosphere representative of a 2017 pollution event in Beijing, China. Intestinal homeostasis and microbiota were assessed in both male and female offspring during the suckling-to-weaning transition. RESULTS: Sex-specific differences were observed in progeny of gestationally-exposed mice. In utero exposed males exhibited decreased villus and crypt length, vacuolation abnormalities, and lower levels of tight junction protein ZO-1 in ileum. They showed an upregulation of absorptive cell markers and a downregulation of neonatal markers in colon. Cecum of in utero exposed male mice also presented a deeply unbalanced inflammatory pattern. By contrast, in utero exposed female mice displayed less severe intestinal alterations, but included dysregulated expression of Lgr5 in colon, Tjp1 in cecum, and Epcam, Car2 and Sis in ileum. Moreover, exposed female mice showed dysbiosis characterized by a decreased weighted UniFrac ß-diversity index, a higher abundance of Bacteroidales and Coriobacteriales orders, and a reduced Firmicutes/Bacteroidetes ratio. CONCLUSION: Prenatal realistic modelling of an urban air pollution event induced sex-specific precocious alterations of structural and immune intestinal development in mice.


Assuntos
Poluição do Ar , Microbiota , Poluição do Ar/efeitos adversos , Animais , Feminino , Mucosa Intestinal/metabolismo , Intestinos , Masculino , Camundongos , Gravidez , Desmame
10.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159767

RESUMO

Acceptability and relevance of nanoparticles in the society is greatly improved using a safer-by-design strategy. However, this is difficult to implement when too late in the development process or when nanoparticles are already on the market (e.g., TiO2). We employ this strategy for emerging nanoparticles of lanthanide oxysulfide of formula (Gd,Ce)2O2S, relevant for photocatalysis as well as for multimodal imaging, as the bandgap of the nanoparticles, related to their Ce content, impacts their ability to absorb visible light. As a first step, we investigated the production of reactive oxygen species (ROS) as a function of cerium content, in abiotic conditions and in vitro using murine macrophage RAW 264.7 cell line. We demonstrate that, at sub-lethal doses, Ce-containing oxysulfide nanoparticles are responsible for a higher ROS intracellular formation than cerium-free Gd2O2S nanoparticles, although no significant inflammatory response or oxidative stress was measured. Moreover, there was no significant loss of cerium as free cation from the nanoparticles, as evidenced by X-ray fluorescence mapping. Based on these results, we propose a risk analysis for lanthanide oxysulfide nanoparticles, leading to a technology assessment that fulfills the safer-by-design strategy.

11.
Front Neurosci ; 15: 780698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938157

RESUMO

Toxic effects of nanoparticles on female reproductive health have been documented but the underlying mechanisms still need to be clarified. Here, we investigated the effect of carbon black nanoparticles (CB NPs) on the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which are key regulators of gonadal gametogenesis and steroidogenesis. To that purpose, we subjected adult female mice to a weekly non-surgical intratracheal administration of CB NPs at an occupationally relevant dose over 4 weeks. We also analyzed the effects of CB NPs in vitro, using both primary cultures of pituitary cells and the LßT2 gonadotrope cell line. We report here that exposure to CB NPs does not disrupt estrous cyclicity but increases both circulating FSH levels and pituitary FSH ß-subunit gene (Fshb) expression in female mice without altering circulating LH levels. Similarly, treatment of anterior pituitary or gonadotrope LßT2 cells with increasing concentrations of CB NPs dose-dependently up-regulates FSH but not LH gene expression or release. Moreover, CB NPs enhance the stimulatory effect of GnRH on Fshb expression in LßT2 cells without interfering with LH regulation. We provide evidence that CB NPs are internalized by LßT2 cells and rapidly activate the cAMP/PKA pathway. We further show that pharmacological inhibition of PKA significantly attenuates the stimulatory effect of CB NPs on Fshb expression. Altogether, our study demonstrates that exposure to CB NPs alters FSH but not LH expression and may thus lead to gonadotropin imbalance.

12.
Sci Rep ; 11(1): 23129, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848769

RESUMO

Gold (Au) can be deposited as nanoparticles (NPs) smaller than 10 nm in diameter on a variety of metal oxide (MOx) NPs. Au/MOx have high catalytic performance and selective oxidation capacity which could have implications in terms of biological activity, and more specifically in modulation of the inflammatory reaction. Therefore, the aim of this study was to examine the effect of Au/TiO2, Au/ZrO2 and Au/CeO2 on viability, phagocytic capacity and inflammatory profile (TNF-α and IL-1ß secretion) of murine macrophages. The most important result of this study is an anti-inflammatory effect of Au/MOx depending on the MOx nature with particle internalization and no alteration of cell viability and phagocytosis. The effect was dependent on the MOx NPs chemical nature (Au/TiO2 > Au/ZrO2 > Au/CeO2 if we consider the number of cytokines whose concentration was reduced by the NPs), and on the inflammatory mediator considered. The effect of Au/TiO2 NPs was not related to Au NPs size (at least in the case of Au/TiO2 NPs in the range of 3-8 nm). To the best of our knowledge, this is the first demonstration of an anti-inflammatory effect of Au/MOx.


Assuntos
Anti-Inflamatórios/farmacologia , Ouro , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxidos/química , Adsorção , Animais , Biotecnologia , Sobrevivência Celular , Inflamação , Lipopolissacarídeos , Macrófagos Peritoneais , Metais , Camundongos , Camundongos Endogâmicos C57BL , Nanomedicina , Nanotecnologia , Oxigênio/química , Tamanho da Partícula , Fagocitose , Células RAW 264.7 , Titânio/química
13.
Environ Epidemiol ; 5(4): e165, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34414348

RESUMO

Because of the direct interaction of lungs with the environment, respiratory diseases are among the leading causes of environment-related deaths in the world. Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) are two highly debilitating diseases that are of particular interest in the context of environmental studies; they both are characterized by a similar progressive loss of lung function with small bronchi alterations, and a high phenotypic variability of unknown origin, which prevents a good therapeutic efficacy. In the last years, there has been an evolution in the apprehension of the study of diseases going from a restricted "one exposure, one disease" approach to a broader concept with other associating factors, the exposome. The overall objective of the REMEDIA project is to extend the understanding of the contribution of the exposome to COPD and CF diseases. To achieve our aim, we will (1) exploit data from existing cohorts and population registries to create a unified global database gathering phenotype and exposome information; (2) develop a flexible individual sensor device combining environmental and biomarker toolkits; (3) use a versatile atmospheric simulation chamber to simulate the health effects of complex exposomes; (4) use machine learning supervised analyses and causal inference models to identify relevant risk factors; and (5) develop econometric and cost-effectiveness models to assess the costs, performance, and cost-effectiveness of a selection of prevention strategies. The results will be used to develop guidelines to better predict disease risks and constitute the elements of the REMEDIA toolbox. The multidisciplinary approach carried out by the REMEDIA European project should represent a major breakthrough in reducing the morbidity and mortality associated with COPD and CF diseases.

14.
Sleep Med ; 81: 474-476, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33872948

RESUMO

Obstructive sleep apnea is a common chronic disorder that leads to chronic intermittent hypoxia described as an important factor contributing to the pathogenesis of OSA-related comorbidities. Besides, recent data suggest that intermittent hypoxia can induce adaptative cardiovascular pathways inducing a relative resistance to ischemic insults. Adaptative pathways induced by hypoxia could implicate autophagic processes and Beclin-1, one of the first mammalian autophagy effectors. Thus, activation of autophagy could protect against cardiovascular events in patients with OSA and could be considered as biomarker of a better prognosis.


Assuntos
Apneia Obstrutiva do Sono , Animais , Autofagia , Proteína Beclina-1 , Biomarcadores , Humanos , Hipóxia , Apneia Obstrutiva do Sono/complicações
15.
Part Fibre Toxicol ; 18(1): 6, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526046

RESUMO

BACKGROUND: Cerium (Ce) is a rare earth element, rapidly oxidizing to form CeO2, and currently used in numerous commercial applications, especially as nanoparticles (NP). The potential health effects of Ce remain uncertain, but literature indicates the development of rare earth pneumoconiosis accompanied with granuloma formation, interstitial fibrosis and inflammation. The exact underlying mechanisms are not yet completely understood, and we propose that autophagy could be an interesting target to study, particularly in macrophages. Therefore, the objective of our study was to investigate the role of macrophagic autophagy after pulmonary exposure to CeO2 NP in mice. Mice lacking the early autophagy gene Atg5 in their myeloid lineage and their wildtype counterparts were exposed to CeO2 NP by single oropharyngeal administration and sacrificed up to 1 month after. At that time, lung remodeling was thoroughly characterized (inflammatory cells infiltration, expression of fibrotic markers such as αSMA, TGFß1, total and type I and III collagen deposition), as well as macrophage infiltration (quantification and M1/M2 phenotype). RESULTS: Such pulmonary exposure to CeO2 NP induces a progressive and dose-dependent lung fibrosis in the bronchiolar and alveolar walls, together with the activation of autophagy. Blockage of macrophagic autophagy protects from alveolar but not bronchiolar fibrosis, via the modulation of macrophage polarization towards M2 phenotype. CONCLUSION: In conclusion, our findings bring novel insight on the role of macrophagic autophagy in lung fibrogenesis, and add to the current awareness of pulmonary macrophages as important players in the disease.


Assuntos
Cério/toxicidade , Nanopartículas , Fibrose Pulmonar , Animais , Autofagia , Pulmão , Macrófagos , Camundongos , Nanopartículas/toxicidade , Fibrose Pulmonar/induzido quimicamente
17.
Eur Respir Rev ; 29(157)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33004528

RESUMO

The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).


Assuntos
Pneumopatias , Doenças Respiratórias , Animais , Doença Crônica , Exposição Ambiental , Feminino , Humanos , Pulmão , Pneumopatias/diagnóstico , Pneumopatias/epidemiologia , Pneumopatias/etiologia , Gravidez
18.
Am J Respir Crit Care Med ; 202(8): 1088-1104, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628504

RESUMO

Rationale: Promoting endogenous pulmonary regeneration is crucial after damage to restore normal lungs and prevent the onset of chronic adult lung diseases.Objectives: To investigate whether the cell-cycle inhibitor p16INK4a limits lung regeneration after newborn bronchopulmonary dysplasia (BPD), a condition characterized by the arrest of alveolar development, leading to adult sequelae.Methods: We exposed p16INK4a-/- and p16INK4aATTAC (apoptosis through targeted activation of caspase 8) transgenic mice to postnatal hyperoxia, followed by pneumonectomy of the p16INK4a-/- mice. We measured p16INK4a in blood mononuclear cells of preterm newborns, 7- to 15-year-old survivors of BPD, and the lungs of patients with BPD.Measurements and Main Results: p16INK4a concentrations increased in lung fibroblasts after hyperoxia-induced BPD in mice and persisted into adulthood. p16INK4a deficiency did not protect against hyperoxic lesions in newborn pups but promoted restoration of the lung architecture by adulthood. Curative clearance of p16INK4a-positive cells once hyperoxic lung lesions were established restored normal lungs by adulthood. p16INK4a deficiency increased neutral lipid synthesis and promoted lipofibroblast and alveolar type 2 (AT2) cell development within the stem-cell niche. Besides, lipofibroblasts support self-renewal of AT2 cells into alveolospheres. Induction with a PPARγ (peroxisome proliferator-activated receptor γ) agonist after hyperoxia also increased lipofibroblast and AT2 cell numbers and restored alveolar architecture in hyperoxia-exposed mice. After pneumonectomy, p16INK4a deficiency again led to an increase in lipofibroblast and AT2 cell numbers in the contralateral lung. Finally, we observed p16INK4a mRNA overexpression in the blood and lungs of preterm newborns, which persisted in the blood of older survivors of BPD.Conclusions: These data demonstrate the potential of targeting p16INK4a and promoting lipofibroblast development to stimulate alveolar regeneration from childhood to adulthood.


Assuntos
Displasia Broncopulmonar/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Pulmão/fisiologia , Regeneração/fisiologia , Adolescente , Adulto , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Criança , Modelos Animais de Doenças , Fibroblastos/patologia , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Distribuição Aleatória , Estudos de Amostragem , Adulto Jovem
19.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L71-L81, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374670

RESUMO

SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 2 (SPOCK2) was previously associated with genetic susceptibility to bronchopulmonary dysplasia in a French population of very preterm neonates. Its expression increases during lung development and is increased after exposure of rat pups to hyperoxia compared with controls bred in room air. To further investigate the role of SPOCK2 during lung development, we designed two mouse models, one that uses a specific anti-Spock2 antibody and one that reproduces the hyperoxia-induced Spock2 expression with a transgenic mouse model resulting in a conditional and lung-targeted overexpression of Spock2. When mice were bred under hyperoxic conditions, treatment with anti-Spock2 antibodies significantly improved alveolarization. Lung overexpression of Spock2 altered alveolar development in pups bred in room air and worsened hyperoxia-induced lesions. Neither treatment with anti-Spock2 antibody nor overexpression of Spock2 was associated with abnormal activation of matrix metalloproteinase-2. These two models did not alter the expression of known players in alveolar development. This study brings strong arguments for the deleterious role of SPOCK2 on lung alveolar development especially after lung injury, suggesting its role in bronchopulmonary dysplasia susceptibility. These effects are not mediated by a deregulation in metalloproteases activity and in expression of factors essential to normal alveolarization. The balance between types 1 and 2 epithelial alveolar cells may be involved.


Assuntos
Hiperóxia/patologia , Proteoglicanas/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Animais , Anticorpos/metabolismo , Ativação Enzimática , Hiperóxia/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
20.
Sci Rep ; 8(1): 8554, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867105

RESUMO

Anthropic nanoparticles (NP) are increasingly produced and emitted, with accompanying concerns for human health. Currently there is no global understanding as to the exact mechanistics of NP toxicity, as the traditional nanotoxicological approaches only provide a restricted overview. To address this issue, we performed an in-depth transcriptomic analysis of human macrophages exposed to a panel of welding-related metal oxide NP that we previously identified in welders lungs (Fe2O3, Fe3O4, MnFe2O4 and CrOOH NP). Utilizing the specified analysis criteria (|fold change| ≥1.5, p ≤ 0.001), a total of 2164 genes were identified to be differentially expressed after THP-1 macrophage exposure to the different NP. Performing Gene Ontology enrichment analysis, for cellular content, biological processes and Swiss-Prot/Protein Information Resource keywords the data show for the first time a profound modification of gene differential expression in response to the different NP, among which MnFe2O4 NP were the most potent to induce THP-1 macrophage activation. The transcriptomic analysis utilized in the study, provides novel insights into mechanisms that could contribute to NP-induced adverse effects and support the need for widened approaches to supplement existing knowledge of the processes underlying NP toxicity which would have not been possible using traditional nanotoxicological studies.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Soldagem , Humanos , Metais/toxicidade , Óxidos/toxicidade , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...