Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 8(3): e2023GH000988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516504

RESUMO

Shellfish harvesting is central to coastal Alaska Native ways of life, and tribes in Southeast Alaska are committed to preserving sustainable and safe access to subsistence foods. However, consumption of non-commercially harvested shellfish puts Alaska Native communities at elevated risk of exposure to shellfish toxins. To address a lack of state or federal toxin testing for subsistence and recreational harvesting, tribes across Southeast Alaska have formed their own toxin testing and ocean monitoring program. In this study, we interviewed environmental managers responsible for tribes' testing and others with shellfish toxin expertise to report on perceptions of barriers to tribally led testing in Southeast Alaska. Tribal staff identified 40 prospective key informants to interview, including all environmental managers responsible for shellfish toxin testing at subsistence sites in Southeast Alaska. All 40 individuals were invited to participate in an interview and 27 individuals were interviewed. The most frequently discussed barriers to shellfish toxin testing in Southeast Alaska relate to logistical and staffing difficulties associated with communities' remote locations, inconsistent and inadequate funding and funding structures that increase staff burdens, risk communication challenges related to conveying exposure risks while supporting subsistence harvesting, and implications of climate change-related shifts in toxin exposures for risk perception and risk communication. Participants stressed the social origins of perceived barriers. Disinvestment may create and sustain barriers and be most severely felt in Native communities and remote places. Climate change impacts may interact with social and cultural factors to further complicate risk management.

2.
Harmful Algae ; 99: 101918, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33218443

RESUMO

Paralytic shellfish poison toxins (PSTs) produced by the dinoflagellate in the genus Alexandrium are a threat to human health and subsistence lifestyles in Southeast Alaska. It is important to understand the drivers of Alexandrium blooms to inform shellfish management and aquaculture, as well as to predict trends of PST in a changing climate. In this study, we aggregate environmental data sets from multiple agencies and tribal partners to model and predict concentrations of PSTs in Southeast Alaska from 2016 to 2019. We used daily PST concentrations interpolated from regularly sampled blue mussels (Mytilus trossulus) analyzed for total PSTs using a receptor binding assay. We then created random forest models to classify shellfish above and below a threshold of toxicity (80 µg 100 g-1) and used two methods to determine variable importance. We obtained a multivariate model with key variables being sea surface temperature, salinity, freshwater discharge, and air temperature. We then used a similar model trained using lagged environmental variables to hindcast out-of-sample (OOS) shellfish toxicities during April-October in 2017, 2018, and 2019. Hindcast OOS accuracies were low (37-50%); however, we found forecasting using environmental variables may be useful in predicting the timing of early summer blooms. This study reinforces the efficacy of machine learning to determine important drivers of harmful algal blooms, although more complex models incorporating other parameters such as toxicokinetics are likely needed for accurate regional forecasts.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Alaska , Animais , Proliferação Nociva de Algas , Frutos do Mar
3.
Toxins (Basel) ; 12(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575620

RESUMO

Many communities in Southeast Alaska harvest shellfish such as mussels and clams as an important part of a subsistence or traditional diet. Harmful algal blooms (HABs) of phytoplankton such as Alexandrium spp. produce toxins that can accumulate in shellfish tissues to concentrations that can pose a hazard for human health. Since 2013, several tribal governments and communities have pooled resources to form the Southeast Alaska Tribal Ocean Research (SEATOR) network, with the goal of minimizing risks to seafood harvest and enhancing food security. SEATOR monitors toxin concentrations in shellfish and collects and consolidates data on environmental variables that may be important predictors of toxin levels such as sea surface temperature and salinity. Data from SEATOR are publicly available and are encouraged to be used for the development and testing of predictive algorithms that could improve seafood risk assessment in Southeast Alaska. To date, more than 1700 shellfish samples have been analyzed for paralytic shellfish toxins (PSTs) in more than 20 locations, with potentially lethal concentrations observed in blue mussels (Mytilus trossulus) and butter clams (Saxidomus gigantea). Concentrations of PSTs exhibit seasonality in some species, and observations of Alexandrium are correlated to sea surface temperature and salinity; however, concentrations above the threshold of concern have been found in all months, and substantial variation in concentrations of PSTs remain unexplained.


Assuntos
Toxinas Bacterianas/análise , Microbiologia de Alimentos , Proliferação Nociva de Algas , Toxinas Marinhas/análise , Alimentos Marinhos/microbiologia , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar/microbiologia , Alaska , Pesquisa Participativa Baseada na Comunidade , Monitoramento Ambiental , Humanos , Oceanos e Mares , Estações do Ano , Intoxicação por Frutos do Mar/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...