Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782830

RESUMO

We have built an autocatalytic reaction network, based on the hydrolysis of certain imines, which exhibits bistability in an open system. The positive feedback originates from the interplay of fast acid-base equilibria, leading to hydroxide ion production, and pH-dependent hydrolysis rates. The addition of a first-order removal of the autocatalyst can result in sustained pH oscillations close to physiological conditions. The unit-amplitude pH oscillations are accompanied by the stoichiometric conversion of imine into amine back and forth. A systematic parameter search is carried out to characterize the rich observable dynamics and identify the evolving bifurcations.

2.
RSC Adv ; 13(29): 20243-20247, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37416909

RESUMO

In living systems adaptive regulation requires the presence of nonlinear responses in the underlying chemical networks. Positive feedbacks, for example, can lead to autocatalytic bursts that provide switches between two stable states or to oscillatory dynamics. The stereostructure stabilized by hydrogen bonds provides an enzyme its selectivity, rendering pH regulation essential for its functioning. For effective control, triggers by small concentration changes play roles where the strength of feedback is important. Here we show that the interaction of acid-base equilibria with simple reactions with pH-dependent rate can lead to the emergence of a positive feedback in hydroxide ion concentration during the hydrolysis of some Schiff bases in the physiological pH range. The underlying reaction network can also support bistability in an open system.

3.
Langmuir ; 39(14): 5078-5083, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972336

RESUMO

We have studied the calcium phosphate precipitation reaction by producing chemical gardens in a controlled manner using a three-dimensional flow-driven technique. The injection of the phosphate containing solution into the calcium ion reservoir has resulted in structures varying from membranes to crystals. Dynamical phase diagrams are constructed by varying chemical composition and flow rates from which three different growth mechanisms have been revealed. The microstructural analysis by scanning electron microscopy and powder X-ray diffraction confirmed the morphological transition from membrane tubes to crystalline branches upon decreasing pH.

4.
Soft Matter ; 18(8): 1731-1736, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156669

RESUMO

We show that a chemical garden can be developed from an alkaline metal precipitate using a flow-driven setup. By injecting sodium phosphate solution into lithium chloride solution from below, a liquid jet appears, on which a precipitate grows forming a structure resembling a hydrothermal vent. The precipitate column continuously builds upward until a maximum height is reached. The vertical growth then significantly slows down while the tube diameter still increases. The analysis of the growth profiles has revealed a linear dependence of volume growth rate on the injection rate, hence yielding a universal growth profile. The expansion in diameter, localized at the tip of the structure, scales with a power law suggesting that the phenomenon is controlled by both diffusion and convection.

5.
Phys Chem Chem Phys ; 22(18): 10278-10285, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32356539

RESUMO

The spatio-temporal dynamics of an A + B → C front subjected to radial advection is investigated experimentally in a thin solution layer confined between two horizontal plates by radially injecting a solution of potassium thiocyanate (A) into a solution of iron(iii) nitrate (B). The total amount and spatial distribution of the product FeSCN2+ (C) are measured for various flow rates Q and solution thicknesses h. The long-time evolution of the total amount of product, nC, is compared to a scaling obtained theoretically from a one-dimensional reaction-diffusion-advection model with passive advection along the radial coordinate r. We show that, in the experiments, nC is significantly affected when varying either Q or h but scales as nC∼Q-1/2V where V is the volume of injected reactant A provided the solution thickness h between the two confining plates is sufficiently small, in agreement with the theoretical prediction. Our experimental results also evidence that the temporal evolution of the width of the product zone, WC, follows a power law, the exponent of which varies with both Q and h, in disagreement with the one-dimensional model that predicts WC∼t1/2. We show that this experimental observation can be rationalized by taking into account the non-uniform profile of the velocity field of the injected reactant within the cell gap.

6.
Phys Chem Chem Phys ; 20(19): 13365-13369, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29718059

RESUMO

Amino-functionalized inorganic silica nanoshells with a diameter of 511 ± 57 nm are efficiently used as hydrogen ion binders with a base dissociation constant of (1.2 ± 0.1) × 10-4. The hydrogen removal has been shown to produce reaction-diffusion fronts of constant propagation velocity in the autocatalytic chlorite-tetrathionate reaction when it is run in thin planar slices of nanoshell-containing agarose gel to exclude all convection related effects. By controlling the exact amount of amino-functionalized hollow nanospheres in the gel matrix it is possible to finely tune the propagation velocity of the chemical front in the 0.1-10 cm h-1 range. Remarkably, this can be achieved with very low amino-functionalized hollow inorganic nanosphere loadings between 0.1-0.01 (m V-1)%. The front width has also been determined experimentally, which increases by a factor of two with one magnitude decrease in the front velocity.

7.
J Chem Phys ; 148(16): 165103, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716212

RESUMO

We have built a model to describe the hydrogenase catalyzed, autocatalytic, reversible hydrogen oxidation reaction where one of the enzyme forms is the autocatalyst. The model not only reproduces the experimentally observed front properties, but also explains the found hydrogen ion dependence. Furthermore, by linear stability analysis, two different front types are found in good agreement with the experiments.


Assuntos
Biocatálise , Hidrogenase/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...