Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583366

RESUMO

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Assuntos
Edição de Genes , Lipídeos , Fígado , Nanopartículas , Animais , Edição de Genes/métodos , Fígado/metabolismo , Nanopartículas/química , Lipídeos/química , Camundongos , Plasmídeos/genética , Plasmídeos/administração & dosagem , Técnicas de Transferência de Genes , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Humanos , DNA/administração & dosagem , DNA/genética , Duodeno/metabolismo
2.
Nat Biotechnol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514799

RESUMO

Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.

3.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328122

RESUMO

Vascular malformation, a key clinical phenotype of Proteus syndrome, lacks effective models for pathophysiological study and drug development due to limited patient sample access. To bridge this gap, we built a human vascular organoid model replicating Proteus syndrome's vasculature. Using CRISPR/Cas9 genome editing and gene overexpression, we created induced pluripotent stem cells (iPSCs) embodying the Proteus syndrome-specific AKTE17K point mutation for organoid generation. Our findings revealed that AKT overactivation in these organoids resulted in smaller sizes yet increased vascular connectivity, although with less stable connections. This could be due to the significant vasculogenesis induced by AKT overactivation. This phenomenon likely stems from boosted vasculogenesis triggered by AKT overactivation, leading to increased vascular sprouting. Additionally, a notable increase in dysfunctional PDGFRß+ mural cells, impaired in matrix secretion, was observed in these AKT-overactivated organoids. The application of AKT inhibitors (ARQ092, AZD5363, or GDC0068) reversed the vascular malformations; the inhibitors' effectiveness was directly linked to reduced connectivity in the organoids. In summary, our study introduces an innovative in vitro model combining organoid technology and gene editing to explore vascular pathophysiology in Proteus syndrome. This model not only simulates Proteus syndrome vasculature but also holds potential for mimicking vasculatures of other genetically driven diseases. It represents an advance in drug development for rare diseases, historically plagued by slow progress.

4.
Lab Chip ; 24(3): 396-407, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180130

RESUMO

The effects of immunotherapeutics on interactions between immune and cancer cells are modulated by multiple components in the tumour microenvironment (TME), including endothelium and tumour stroma, which provide both a physical barrier and immunosuppressive stimuli. Herein, we report a recirculating chip to enable continuous immune cell recirculation through a microfluidic cell array to include these crucial players. This system consists of a three-layered cell array (µFCA) spatially emulating the TME, with tailored fluidic circuits establishing T cell recirculation. This platform enables the study of dynamics among the TME, immune cells in a circulatory system and cancer cell responses thereof. Through this system, we found that tumour endothelium hindered T cell infiltration into the reconstructed breast cancer tumour compartment. This negative effect was alleviated when treated with anti-human PD-L1 (programmed cell death ligand 1) antibody. Another key stromal component - cancer associated fibroblasts - attenuated T cell infiltration, compared against normal fibroblasts, and led to reduced apoptotic activity in cancer cells. These results confirm the capability of our tumour-on-a-chip system in identifying some key axes to target in overcoming barriers to immunotherapy by recapitulating immune cell interactions with the reconstructed TME. Our results also attest to the feasibility of scaling up this system for high-throughput cancer immunotherapeutic screening.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microfluídica , Imunoterapia , Linfócitos T
5.
Biomater Sci ; 12(9): 2203-2228, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293828

RESUMO

Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.


Assuntos
Nanopartículas , Oligodesoxirribonucleotídeos , Humanos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/administração & dosagem , Nanopartículas/química , Animais , Imunoterapia/métodos , Receptor Toll-Like 9/metabolismo , Sistemas de Liberação de Medicamentos
6.
Chem Commun (Camb) ; 60(17): 2301-2319, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251733

RESUMO

The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Medicina de Precisão
7.
Adv Mater ; 36(13): e2300665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37437039

RESUMO

Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential.


Assuntos
Edição de Genes , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética , Vetores Genéticos , Neoplasias/genética , Neoplasias/terapia
8.
Biomaterials ; 302: 122349, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844429

RESUMO

Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Neoplasias Hepáticas/terapia , Nanomedicina , Tirosina
9.
Theranostics ; 13(12): 4102-4120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554284

RESUMO

Rationale: Bilateral sonication with focused ultrasound (FUS) in conjunction with microbubbles has been shown to separately reduce amyloid plaques and hyperphosphorylated tau protein in the hippocampal formation and the entorhinal cortex in different mouse models of Alzheimer's disease (AD) without any therapeutic agents. However, the two pathologies are expressed concurrently in human disease. Therefore, the objective of this study is to investigate the effects of repeated bilateral sonications in the presence of both pathologies. Methods: Herein, we investigate its functional and morphological outcomes on brains bearing both pathologies simultaneously. Eleven transgenic mice of the 3xTg-AD line (14 months old) expressing human amyloid beta and human tau and eleven age-matched wild-type littermates received four weekly bilateral sonications covering the hippocampus followed by working memory testing. Afterwards, immunohistochemistry and immunoassays (western blot and ELISA) were employed to assess any changes in amyloid beta and human tau. Furthermore, we present preliminary data from our clinical trial using a neuronavigation-guided FUS system for sonications in AD patients (NCT04118764). Results: Interestingly, both wild-type and transgenic animals that received FUS experienced improved working memory and spent significantly more time in the escape platform-quadrant, with wild-type animals spending 43.2% (sham: 37.7%) and transgenic animals spending 35.3% (sham: 31.0%) of the trial in the target quadrant. Furthermore, this behavioral amelioration in the transgenic animals correlated with a 58.3% decrease in the neuronal length affected by tau and a 27.2% reduction in total tau levels. Amyloid plaque population, volume and overall load were also reduced overall. Consistently, preliminary data from a clinical trial involving AD patients showed a 1.8% decrease of amyloid PET signal 3-weeks after treatment in the treated hemisphere compared to baseline. Conclusion: For the first time, it is shown that bilateral FUS-induced BBB opening significantly and simultaneously ameliorates both coexistent pathologies, which translated to improvements in spatial memory of transgenic animals with complex AD, the human mimicking phenotype. The level of cognitive improvement was significantly correlated with the volume of BBB opening. Non-transgenic animals were also shown to exhibit similar memory amelioration for the first time, indicating that BBB opening results into benefits in the neuronal function regardless of the existence of AD pathology. A potential mechanism of action for the reduction of the both pathologies investigated was the cholesterol metabolism, specifically the LRP1b receptor, which exhibited increased expression levels in transgenic mice following FUS-induced BBB opening. Initial clinical evidence supported that the beta amyloid reduction shown in rodents could be translatable to humans with significant amyloid reduction shown in the treated hemisphere.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Recém-Nascido , Lactente , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Memória Espacial , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
10.
Proc Natl Acad Sci U S A ; 120(34): e2302910120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579143

RESUMO

Gene editing in the brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches mainly rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.


Assuntos
Encéfalo , Edição de Genes , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica , Transporte Biológico , Microbolhas
11.
Bioact Mater ; 28: 112-131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37250866

RESUMO

Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.

12.
Nano Lett ; 23(3): 757-764, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36648291

RESUMO

Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.


Assuntos
Ácidos Borônicos , Quitosana , Animais , Camundongos , Polímeros , Técnicas de Transferência de Genes
13.
Res Sq ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36712096

RESUMO

Gene editing in the mammalian brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.

14.
Biomaterials ; 293: 121942, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512863

RESUMO

Tumor-positive resection margins after surgery can result in tumor recurrence and metastasis. Although adjuvant postoperative radiotherapy and chemotherapy have been adopted in clinical practice, they lack efficacy and result in unavoidable side effects. Herein, a self-intensified in-situ therapy approach using electrospun fibers loaded with a biomimetic nanozyme and doxorubicin (DOX) is developed. The fabricated PEG-coated zeolite imidazole framework-67 (PZIF67) is demonstrated as a versatile nanozyme triggering reactions in cancer cells based on endogenous H2O2 and •O2-. The PZIF67-generated •OH induces reactive oxygen species (ROS) overload, implementing chemodynamic therapy (CDT). The O2 produced by PZIF67 inhibits the expression of hypoxia-up-regulated proteins, thereby suppressing tumor progression. PZIF67 also catalyzes the degradation of glutathione, further disturbing the intracellular redox homeostasis and enhancing CDT. Furthermore, the introduced DOX not only kills cancer cells individually, but also replenishes the continuously consumed substrates for PZIF67-catalyzed reactions. The PZIF67-weakened drug resistance strengthens the cytotoxicity of DOX. The combined application of PZIF67 and DOX also suppresses metastasis-associated genes. Both in vitro and in vivo results demonstrate that the self-intensified synergy of PZIF67 and DOX on electrospun fibers efficiently prevents postsurgical tumor recurrence and metastasis, offering a feasible therapeutic regimen for operable malignant tumors.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Biomimética , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Glutationa/metabolismo , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
ACS Nano ; 16(12): 20430-20444, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36382718

RESUMO

Photothermal therapy (PTT) is an effective treatment modality that is highly selective for tumor suppression and is a hopeful alternative to traditional cancer therapy. However, PTT-induced inflammatory responses may result in undesirable side effects including increased risks of tumor recurrence and metastasis. Here we developed multifunctional MnO nanoparticles as scavengers of proinflammatory molecules to alleviate the PTT-induced inflammatory response. The MnO nanoparticles improve the PTT therapy by (1) binding and scavenging proinflammatory molecules to inhibit the proinflammatory molecule-induced Toll-like receptors (TLR) activation and nuclear factor kappa B (NF-κB) signaling; (2) inhibiting activated macrophage-induced macrophage recruitment; and (3) inhibiting tumor cell migration and invasion. In vivo experimental results showed that further treatment with MnO nanoparticles after laser therapy not only inhibited the PTT-induced inflammatory response and primary tumor recurrence but also significantly reduced tumor metastasis due to the scavenging activity. These findings suggest that MnO nanoparticles hold the potential for mitigating the therapy-induced severe inflammatory response and inhibiting tumor recurrence and metastasis.


Assuntos
Neoplasias da Mama , Nanopartículas Multifuncionais , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Nanopartículas/química , Recidiva Local de Neoplasia , Fototerapia/métodos , Recidiva , Inflamação
16.
Nat Commun ; 13(1): 5925, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207325

RESUMO

Periodontitis is a common type of inflammatory bone loss and a risk factor for systemic diseases. The pathogenesis of periodontitis involves inflammatory dysregulation, which represents a target for new therapeutic strategies to treat periodontitis. After establishing the correlation of cell-free DNA (cfDNA) level with periodontitis in patient samples, we test the hypothesis that the cfDNA-scavenging approach will benefit periodontitis treatment. We create a nanoparticulate cfDNA scavenger specific for periodontitis by coating selenium-doped hydroxyapatite nanoparticles (SeHANs) with cationic polyamidoamine dendrimers (PAMAM-G3), namely G3@SeHANs, and compare the activities of G3@SeHANs with those of soluble PAMAM-G3 polymer. Both G3@SeHANs and PAMAM-G3 inhibit periodontitis-related proinflammation in vitro by scavenging cfDNA and alleviate inflammatory bone loss in a mouse model of ligature-induced periodontitis. G3@SeHANs also regulate the mononuclear phagocyte system in a periodontitis environment, promoting the M2 over the M1 macrophage phenotype. G3@SeHANs show greater therapeutic effects than PAMAM-G3 in reducing proinflammation and alveolar bone loss in vivo. Our findings demonstrate the importance of cfDNA in periodontitis and the potential for using hydroxyapatite-based nanoparticulate cfDNA scavengers to ameliorate periodontitis.


Assuntos
Ácidos Nucleicos Livres , Dendrímeros , Periodontite , Selênio , Animais , Ácidos Nucleicos Livres/genética , Dendrímeros/farmacologia , Hidroxiapatitas , Camundongos , Periodontite/tratamento farmacológico
17.
J Mater Chem B ; 10(36): 6841-6858, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35781483

RESUMO

Membrane fusion, a fundamental biological process of the fusion of the membrane composition between cells, is vital for cell-cell communication and cargo transport between living cells. This fusion interaction achieves the transportation of the inner content to the cellular cytosol as well as the simultaneous blending of foreign substances with the cell membrane. Inspired by this biological process, emerging membrane-fusogenic particles have been developed, opening a new area for bioengineering and biomedical applications. Especially, membrane-fusion-mediated transfer of inner cargoes can bypass endosomal entrapment to maximize the transportation efficiency, emerging as a unique cytoplasmic delivery platform distinct from those depending on conventional endocytosis-based pathways. In addition, the membrane fusion enables cell surface modification through lipid diffusion and mixing, providing a tool for direct cell membrane engineering. In this review, we focus on the development of membrane-fusogenic particles and their up-to-date progress. We briefly introduce the concept of membrane fusion, elaborate inspiring strategies of membrane-fusogenic particles, and highlight the recent advances and the promising applications of membrane-fusogenic particles as a next-generation bioengineering tool. In the end, we conclude with the present challenges and opportunities, providing insights in the future research of membrane-fusogenic particles.


Assuntos
Biomimética , Fusão de Membrana , Bioengenharia , Lipídeos , Membranas
18.
J Mater Chem B ; 9(48): 9826-9838, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854456

RESUMO

Helicobacter pylori (H. pylori) infection is considered to be the main cause of most digestive diseases,such as chronic active gastritis, gastroduodenal ulcers, or even gastric cancer. Oral medication is a transformative approach to treat H. pylori-induced infections. However, unlike intravenous administration, orally administrated drugs have to overcome various barriers before reaching the infected sites, which significantly limits the therapeutic efficacy. These challenges may be addressed by emerging nanomedicine that is equipped with nanotechnology approaches to enable efficient and effective targeted delivery of drugs. Herein, in this review, we first discuss the conventional therapy for the eradication of H. pylori. Through the introduction of the critical barriers of oral administration, the benefits of nanomedicine are highlighted. Recently-published examples of nanocarriers for combating H. pylori in terms of design, preparation, and antimicrobial mechanisms are then presented, followed by our perspective on potential future research directions of oral nanomedicines.


Assuntos
Antibacterianos/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Nanomedicina , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Infecções por Helicobacter/microbiologia , Humanos , Teste de Materiais , Nanotecnologia
19.
Adv Sci (Weinh) ; 8(24): e2102051, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665528

RESUMO

Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.


Assuntos
Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/terapia , Edição de Genes/métodos , Terapia Genética/métodos , Hepatite Viral Humana/terapia , Neoplasias Hepáticas/terapia , Nanomedicina Teranóstica/métodos , Carcinoma Hepatocelular/genética , Hepatite Viral Humana/genética , Humanos , Neoplasias Hepáticas/genética
20.
Talanta ; 234: 122675, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364475

RESUMO

Hepatitis B virus (HBV) infection is one of the global healthcare burdens, and its early diagnosis is crucial for the prevention of HBV-induced chronic hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although different detection approaches have been reported, most of these methods either rely on sophisticated machines or procedures, which limit their use particularly in the high endemic, developing countries. In this work, we report a dual-sensing nanoplatform built on noble metal-molybdenum disulfide (MoS2) nanohybrids, and this platform can detect the HBV DNA target through either fluorometric or colorimetric readouts. The design with the silver nanocluster (AgNC)-MoS2 nanohybrid enables multiplex fluorescent detection, while the HBV DNA-regulated growth of platinum nanoparticles (PtNPs) on the MoS2 nanosheets offers signal-on colorimetric detection. Both AgNC-MoS2 and PtNP-MoS2 nanohybrids show high sensitivity with pico-molar detection limit and single nucleotide specificity, even with the spiked human serum. Collectively, the proposed nanohybrids possess their potential in the use of early HBV diagnosis, particularly suitable for the high endemic areas with limited medical and instrumental supports.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , DNA , Dissulfetos , Vírus da Hepatite B/genética , Humanos , Limite de Detecção , Molibdênio , Platina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...