Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(48): 21810-21825, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36410044

RESUMO

One goal of the second quantum revolution is developing an approach to transmit coherent quantum information across the world, forming the basis of the quantum Internet. Achieving this lofty goal will require scalable and tunable materials that allow for cross-platform interconnections. Solution-processable molecular systems designed from the ground up are poised to introduce the necessary tunability to meet these needs. In this Perspective, we describe the components of a quantum network, outline the criteria to create molecular systems suitable for networking applications, and discuss the pathway to generate spin-photon entanglement, a first step toward remote entanglement between molecular spins in a network. We also describe some initial steps to optimize molecular spins for potential integration into quantum networks as readily deployable qubits in network nodes. Throughout this Perspective, we highlight the tremendous potential of molecular systems for the quantum Internet and illustrate openings for chemists in this nascent field.

2.
J Am Chem Soc ; 143(50): 21350-21363, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817994

RESUMO

The inherent atomistic precision of synthetic chemistry enables bottom-up structural control over quantum bits, or qubits, for quantum technologies. Tuning paramagnetic molecular qubits that feature optical-spin initialization and readout is a crucial step toward designing bespoke qubits for applications in quantum sensing, networking, and computing. Here, we demonstrate that the electronic structure that enables optical-spin initialization and readout for S = 1, Cr(aryl)4, where aryl = 2,4-dimethylphenyl (1), o-tolyl (2), and 2,3-dimethylphenyl (3), is readily translated into Cr(alkyl)4 compounds, where alkyl = 2,2,2-triphenylethyl (4), (trimethylsilyl)methyl (5), and cyclohexyl (6). The small ground state zero field splitting values (<5 GHz) for 1-6 allowed for coherent spin manipulation at X-band microwave frequency, enabling temperature-, concentration-, and orientation-dependent investigations of the spin dynamics. Electronic absorption and emission spectroscopy confirmed the desired electronic structures for 4-6, which exhibit photoluminescence from 897 to 923 nm, while theoretical calculations elucidated the varied bonding interactions of the aryl and alkyl Cr4+ compounds. The combined experimental and theoretical comparison of Cr(aryl)4 and Cr(alkyl)4 systems illustrates the impact of the ligand field on both the ground state spin structure and excited state manifold, laying the groundwork for the design of structurally precise optically addressable molecular qubits.

3.
ACS Cent Sci ; 7(5): 712-723, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079892

RESUMO

The second quantum revolution hinges on the creation of materials that unite atomic structural precision with electronic and structural tunability. A molecular approach to quantum information science (QIS) promises to enable the bottom-up creation of quantum systems. Within the broad reach of QIS, which spans fields ranging from quantum computation to quantum communication, we will focus on quantum sensing. Quantum sensing harnesses quantum control to interrogate the world around us. A broadly applicable class of quantum sensors would feature adaptable environmental compatibility, control over distance from the target analyte, and a tunable energy range of interaction. Molecules enable customizable "designer" quantum sensors with tunable functionality and compatibility across a range of environments. These capabilities offer the potential to bring unmatched sensitivity and spatial resolution to address a wide range of sensing tasks from the characterization of dynamic biological processes to the detection of emergent phenomena in condensed matter. In this Outlook, we outline the concepts and design criteria central to quantum sensors and look toward the next generation of designer quantum sensors based on new classes of molecular sensors.

4.
J Am Chem Soc ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210910

RESUMO

Synthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure. To mimic the electronic structure of optically addressable defect sites, we designed the spin-triplet, V3+ complex, (C6F5)3trenVCNtBu (1). We measured the static spin properties as well as the spin coherence time of 1 demonstrating coherent control of this spin qubit with a 240 GHz electron paramagnetic resonance spectrometer powered by a free electron laser. We found that 1 exhibited narrow, near-infrared photoluminescence (PL) from a spin-singlet excited state. Using variable magnetic field PL spectroscopy, we resolved emission into each of the ground-state spin sublevels, a crucial component for spin-selective optical initialization and readout. This work demonstrates that trigonally symmetric, heteroleptic V3+ complexes are candidates for optical spin addressability.

5.
J Am Chem Soc ; 142(35): 14826-14830, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786760

RESUMO

The inherent atomic level structural control of synthetic chemistry enables the creation of qubits, the base units of a quantum information science system, designed for a target application. For quantum sensing applications, enabling optical read-out of spin in tunable molecular systems, akin to defect-based systems, would be transformative. This approach would bring together molecular tunability with optical read-out technology. In theory, nickel ions in octahedral symmetry meet all the criteria for optical readout of spin. Yet, to the best of our knowledge, there are no pulse EPR studies on Ni2+ molecules. We identified two compounds featuring highly symmetric Ni2+ centers, thereby engendering weak zero-field splitting to enable EPR addressability: [Ni(phen)3](BF4)2 (1) and [Ni(pyr3)2](BF4)2 (2) (phen = 1,10-phenanthroline; pyr3 = tris-2-pyridyl-methane). Crucially, these complexes feature the requisite strong field ligands to enable emission for optical addressability. We extracted axial zero-field splitting parameters of D = +0.9 cm-1 and +2.7 cm-1 for 1 and 2, respectively, enabling pulse EPR measurements. Both compounds produce emission at λmax = 938-944 nm. The aggregate of these results expands the catalogue of qubit materials to Ni2+-based compounds and offers a future pathway for optical readout of these molecules.

6.
Dalton Trans ; 47(34): 11744-11748, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29993061

RESUMO

We report the temperature dependence of the spin dynamics of the octacyanometallates [Mo(CN)8]3- and [W(CN)8]3-. At 5 K, these complexes display remarkably long spin-lattice relaxation times of 1.05 s, and 0.63 s, respectively. We probe the contributing factors to the spin relaxation and demonstrate the impact of spin-orbit coupling as a handle to tune vibrationally mediated spin-lattice relaxation.

7.
Polyhedron ; 114: 299-305, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27453621

RESUMO

Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl2•3H2O, [Ni(DOTAM)]Cl2•4H2O, and [Cu(DOTAM)](ClO4)2•H2O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)]2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)]2+, [Ni(DOTAM)]2+, and [Zn(DOTAM)]2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)]2+ and [Ca(DOTAM)]2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)]2+, which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...