Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 923: 148574, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768876

RESUMO

Cordyceps militaris is a medicinal entomopathogenic fungus containing valuable biometabolites for pharmaceutical applications. Its genetic inheritance and environmental factors play a crucial role in the production of biomass enriched with cordycepin. While temperature is a crucial controlled parameter for fungal cultivation, its impacts on growth and metabolite biosynthesis remains poorly characterized. This study aimed to investigate the metabolic responses and cordycepin production of C. militaris strain TBRC6039 under various temperature conditions through transcriptome analysis. Among 9599 expressed genes, 576 genes were significantly differentially expressed at culture temperatures of 15 and 25 °C. The changes in the transcriptional responses induced by these temperatures were found in several metabolisms involved in nutrient assimilation and energy source, including amino acids metabolism (e.g., glycine, serine and threonine metabolism) and lipid metabolism (e.g., biosynthesis of unsaturated fatty acids and steroid biosynthesis). At the lower temperature (15 °C), the biosynthetic pathways of lipids, specifically ergosterol and squalene, were the target for maintaining membrane function by transcriptional upregulation. Our study revealed the responsive mechanisms of C. militaris in acclimatization to temperature conditions that provide an insight on physiological manipulation for the production of metabolites by C. militaris.

2.
Biology (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666888

RESUMO

Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic approach using gene manipulation and bioprocessing development has improved lipid production and the strain's economic viability. However, the systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identification were implemented between the wild-type (WJ11) and ΔcarRP WJ11 strains of M. circinelloides. As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ΔcarRP WJ11 strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism. Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA generation suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways. Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides that are valuable in applied research to design optimized strains for producing desired bioproducts through emerging technology.

3.
Biology (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534409

RESUMO

The genome-scale metabolic model (GSMM) of Cordyceps militaris provides a comprehensive basis of carbon assimilation for cell growth and metabolite production. However, the model with a simple mass balance concept shows limited capability to probe the metabolic responses of C. militaris under light exposure. This study, therefore, employed the transcriptome-integrated GSMM approach to extend the investigation of C. militaris's metabolism under light conditions. Through the gene inactivity moderated by metabolism and expression (GIMME) framework, the iPS1474-tiGSMM model was furnished with the transcriptome data, thus providing a simulation that described reasonably well the metabolic responses underlying the phenotypic observation of C. militaris under the particular light conditions. The iPS1474-tiGSMM obviously showed an improved prediction of metabolic fluxes in correlation with the expressed genes involved in the cordycepin and carotenoid biosynthetic pathways under the sucrose culturing conditions. Further analysis of reporter metabolites suggested that the central carbon, purine, and fatty acid metabolisms towards carotenoid biosynthesis were the predominant metabolic processes responsible in light conditions. This finding highlights the key responsive processes enabling the acclimatization of C. militaris metabolism in varying light conditions. This study provides a valuable perspective on manipulating metabolic genes and fluxes towards the target metabolite production of C. militaris.

4.
Microb Cell Fact ; 22(1): 253, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071331

RESUMO

BACKGROUND: Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields. To overcome these limitations and meet the increasing market demand, the efficient production of cordycepin by the GRAS-status Aspergillus oryzae strain using a synthetic biology approach was developed in this study. RESULTS: An engineered strain of A. oryzae capable of cordycepin production was successfully constructed by overexpressing two metabolic genes (cns1 and cns2) involved in cordycepin biosynthesis under the control of constitutive promoters. Investigation of the flexibility of carbon utilization for cordycepin production by the engineered A. oryzae strain revealed that it was able to utilize C6-, C5-, and C12-sugars as carbon sources, with glucose being the best carbon source for cordycepin production. High cordycepin productivity (564.64 ± 9.59 mg/L/d) was acquired by optimizing the submerged fermentation conditions. CONCLUSIONS: This study demonstrates a powerful production platform for bioactive cordycepin production by A. oryzae using a synthetic biology approach. An efficient and cost-effective fermentation process for cordycepin production using an engineered strain was established, offering a powerful alternative source for further upscaling.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Desoxiadenosinas/metabolismo , Fermentação , Carbono/metabolismo
5.
Curr Opin Biotechnol ; 81: 102939, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075529

RESUMO

The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.


Assuntos
Cordyceps , Cordyceps/genética , Cordyceps/metabolismo , Biologia de Sistemas , Biotecnologia , Adenosina/metabolismo , Genômica
6.
J Microbiol ; 61(2): 199-210, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36745334

RESUMO

Transcriptional regulation has been adopted for developing metabolic engineering tools. The regulatory promoter is a crucial genetic element for strain optimization. In this study, a gene set of Aspergillus oryzae with highly constitutive expression across different growth stages was identified through transcriptome data analysis. The candidate promoters were functionally characterized in A. oryzae by transcriptional control of ß-glucuronidase (GUS) as a reporter. The results showed that the glyceraldehyde triphosphate dehydrogenase promoter (PgpdA1) of A. oryzae with a unique structure displayed the most robust strength in constitutively controlling the expression compared to the PgpdA2 and other putative promoters tested. In addition, the ubiquitin promoter (Pubi) of A. oryzae exhibited a moderate expression strength. The deletion analysis revealed that the 5' untranslated regions of gpdA1 and ubi with the length of 1028 and 811 nucleotides, counted from the putative translation start site (ATG), respectively, could efficiently drive the GUS expression. Interestingly, both promoters could function on various carbon sources for cell growth. Glucose was the best fermentable carbon source for allocating high constitutive expressions during cell growth, and the high concentrations (6-8% glucose, w/v) did not repress their functions. It was also demonstrated that the secondary metabolite gene coding for indigoidine could express under the control of PgpdA1 or Pubi promoter. These strong and moderate promoters of A. oryzae provided beneficial options in tuning the transcriptional expression for leveraging the metabolic control towards the targeted products.


Assuntos
Aspergillus oryzae , Transcriptoma , Aspergillus oryzae/genética , Regiões Promotoras Genéticas , Perfilação da Expressão Gênica , Carbono
7.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012875

RESUMO

Cordyceps militaris is an industrially important fungus, which is often used in Asia as traditional medicine. There has been a published genome-scale metabolic model (GSMM) of C. militaris useful for predicting its growth behaviors; however, lipid metabolism, which plays a vital role in cellular functions, remains incomplete in the GSMM of C. militaris. A comprehensive study on C. militaris was thus performed by enhancing GSMM through integrative analysis of metabolic footprint and transcriptome data. Through the enhanced GSMM of C. militaris (called iPC1469), it contained 1469 genes, 1904 metabolic reactions and 1229 metabolites. After model evaluation, in silico growth simulation results agreed well with the experimental data of the fungal growths on different carbon sources. Beyond the model-driven integrative data analysis, interestingly, we found key metabolic responses in alteration of lipid metabolism in C. militaris upon different carbon sources. The sphingoid bases (e.g., sphinganine, sphingosine, and phytosphingosine) and ceramide were statistically significant accumulated in the xylose culture when compared with other cultures; this study suggests that the sphingolipid biosynthetic capability in C. militaris was dependent on the carbon source assimilated for cell growth; this finding provides a comprehensive basis for the sphingolipid biosynthesis in C. militaris that can help to further redesign its metabolic control for medicinal and functional food applications.

8.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886914

RESUMO

Ammonium is a source of fermentable inorganic nitrogen essential for the growth and development of filamentous fungi. It is involved in several cellular metabolic pathways underlying nitrogen transport and assimilation. Ammonium can be transferred into the cell by an ammonium transporter. This study explored the role of ammonium transporters in nitrogen metabolism and cell biomass production in Aspergillus oryzae strain BCC 7051. Specific sequences encoding ammonium transporters (Amts) in A. oryzae were identified using genomic analysis. Four of the identified ammonium transporter genes, aoamt1-aoamt4, showed similarity in deduced amino acid sequences to the proteins in the ammonium transporter/methylammonium permease (AMT/MEP) family. Transcriptional analysis showed that the expression of aoamt2 and aoamt3 was ammonium-dependent, and was highly upregulated under ammonium-limited conditions. Their functional roles are characterized by genetic perturbations. The gene disruption and overexpression of aoamt3 indicated that the protein encoded by it was a crucial ammonium transporter associated with nitrogen metabolism and was required for filamentous growth. Compared with the wild type, the aoamt3-overexpressing strain showed superior growth performance, high biomass yield, and low glucose consumption. These results shed light on further improvements in the production of potent bioproducts by A. oryzae by manipulating the ammonium uptake capacity and nitrogen metabolism.


Assuntos
Compostos de Amônio , Aspergillus oryzae , Compostos de Amônio/metabolismo , Aspergillus oryzae/genética , Biomassa , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo
9.
PLoS One ; 17(6): e0270359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737654

RESUMO

The growing demand for natural pigments in the industrial sector is a significant driving force in the development of production processes. The production of natural blue pigments, which have wide industrial applications, using microbial systems has been gaining significant attention. In this study, we used Aspergillus oryzae as a platform cell factory to produce the blue pigment indigoidine (InK), by genetic manipulation of its non-ribosomal peptide synthetase system to overexpress the indigoidine synthetase gene (AoinK). Phenotypic analysis showed that InK production from the engineered strain was growth associated, owing to the constitutive control of gene expression. Furthermore, the initial pH, temperature, and glutamine and MgSO4 concentrations were key factors affecting InK production by the engineered strain. The pigment secretion was enhanced by addition of 1% Tween 80 solution to the culture medium. The maximum titer of total InK was 1409.22 ± 95.33 mg/L, and the maximum productivity was 265.09 ± 14.74 mg/L·d. Moreover, the recombinant InK produced by the engineered strain exhibited antioxidant activity. These results indicate that A. oryzae has the potential to be used as a fungal platform for overproduction of extracellular non-ribosomal peptide pigments.


Assuntos
Aspergillus oryzae , Piperidonas , Antioxidantes/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Peptídeos/metabolismo
10.
Biotechnol Rep (Amst) ; 33: e00695, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35004236

RESUMO

The potent promoter and its transcriptional control make a significant contribution to strain optimization. Using transcriptome-based approach, a novel pentose-regulated promoter of the xylose reductase gene (PxyrA) of Aspergillus oryzae was identified. The promoter analysis showed that the PxyrA was tightly regulated by pentose sugars, which xylose and xylan were favorable inducers. The PxyrA function was highly efficient as compared with the maltose-inducible promoters of A. oryzae. It also exhibited the efficient transcription induction even though certain amounts of glucose and sucrose existed in the cultures. The expression control of PxyrA was dependent on xylose consumption capacity for fungal growth. The control mode of PxyrA offers a simple operation in simultaneous gene expression and cultivation optimization in Aspergilli. This study provides a prospective development of fungal production platform using cellulosic sugars by the xylose-utilizing strains for sustainable growing in circular economy.

11.
J Microbiol ; 60(1): 47-56, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34751906

RESUMO

Oligopeptides with functional activities are of current interest in the nutraceutical and medical sectors. The development of the biosynthetic process of oligopeptides through a nonribosomal peptide synthetase (NRPS) system has become more challenging. To develop a production platform for nonribosomal peptides (NRPs), reprogramming of transcriptional regulation of the acv gene encoded ACV synthetase (ACVS) was implemented in Aspergillus oryzae using the CRISPR-Cas9 system. Awakening silent acv expression was successfully achieved by promoter substitution. Among the three exchanged promoters, AoPgpdA, AoPtef1, and PtPtoxA, the replacement of the native promoter with AoPgpdA led to the highest ACV production in A. oryzae. However, the ACV production of the AoPGpdA strain was also dependent on the medium composition, in which urea was the best nitrogen source, and a C:N ratio of 20:1 was optimal for tripeptide production. In addition to cell growth, magnesium ions are an essential element for ACV production and might participate in ACVS activity. It was also found that ACV was the growth-associated product of the engineered strain that might be a result of constitutive transcriptional control by the AoPgpdA promoter. This study offers a potential strategy for nonribosomal ACV production using the fungal system, which is applicable for redesigning bioactive oligopeptides with industrial relevance.


Assuntos
Aspergillus oryzae/enzimologia , Proteínas Fúngicas/genética , Oligopeptídeos/biossíntese , Peptídeo Sintases/genética , Regiões Promotoras Genéticas , Aspergillus oryzae/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeo Sintases/metabolismo
12.
Biology (Basel) ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34571762

RESUMO

Microbial lipid production with cost effectiveness is a prerequisite for the oleochemical sector. In this work, genome-wide transcriptional responses on the utilization of xylose and glucose in oleaginous Aspergillus oryzae were studied with relation to growth and lipid phenotypic traits. Comparative analysis of the active growth (t1) and lipid-accumulating (t2) stages showed that the C5 cultures efficiently consumed carbon sources for biomass and lipid production comparable to the C6 cultures. By pairwise comparison, 599 and 917 differentially expressed genes (DEGs) were identified in the t1 and t2 groups, respectively, in which the consensus DEGs were categorized into polysaccharide-degrading enzymes, membrane transports, and cellular processes. A discrimination in transcriptional responses of DEGs set was also found in various metabolic genes, mostly in carbohydrate, amino acid, lipid, cofactors, and vitamin metabolisms. Although central carbohydrate metabolism was shared among the C5 and C6 cultures, the metabolic functions in acetyl-CoA and NADPH generation, and biosynthesis of terpenoid backbone, fatty acid, sterol, and amino acids were allocated for leveraging biomass and lipid production through at least transcriptional control. This study revealed robust metabolic networks in the oleaginicity of A. oryzae governing glucose/xylose flux toward lipid biosynthesis that provides meaningful hints for further process developments of microbial lipid production using cellulosic sugar feedstocks.

13.
Gene ; 793: 145745, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077774

RESUMO

Microbial lipid production of oleaginous strains involves in a complex cellular metabolism controlling lipid biosynthesis, accumulation and degradation. Particular storage lipid, triacylglycerol (TAG), contributes to dynamic traits of intracellular lipids and cell growth. To explore a basis of TAG degradation in the oleaginous strain of Aspergillus oryzae, the functional role of two intracellular triacylglycerol lipases, AoTgla and AoTglb, were investigated by targeted gene disruption using CRISPR/Cas9 system. Comparative lipid profiling of different cultivation stages between the control, single and double disruptant strains (ΔAotgla, ΔAotglb and ΔAotglaΔAotglb strains) showed that the inactivation of either AoTgla or AoTglb led to the increase of total lipid contents, particularly in the TAG fraction. Moreover, the prolonged lipid-accumulating stage of all disruptant strains was obtained as indicated by a reduction in specific rate of lipid turnover, in which a holding capacity in maximal lipid and TAG levels was achieved. The involvement of AoTgls in spore production of A. oryzae was also discovered. In addition to the significance in lipid physiology of the oleaginous fungi, this study provides an impact on industrial practice by overcoming the limitation in short lipid-accumulating stage of the fungal strain, which facilitate the cell harvesting step at the maximum lipid production yield.


Assuntos
Aspergillus oryzae/enzimologia , Ácidos Graxos/biossíntese , Proteínas Fúngicas/genética , Lipase/genética , Esporos Fúngicos/enzimologia , Triglicerídeos/biossíntese , Aspergillus oryzae/classificação , Aspergillus oryzae/genética , Sistemas CRISPR-Cas , Ácidos Graxos/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Microbiologia Industrial , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Micélio/enzimologia , Micélio/genética , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Triglicerídeos/genética
14.
World J Microbiol Biotechnol ; 36(12): 183, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179168

RESUMO

Comparative profilings of cell growth and lipid production in the morphologically engineered strain (Δags1) and the wild type (WT) of Aspergillus oryzae BCC7051 were implemented. Using various nitrogen sources, a discrimination in cell morphology between the two strains was found, of which the Δags1 culture exhibited mycelial growth as small pellets in contrast to the WT. Of them, sodium nitrate and potassium nitrate were optimal for lipid production of the WT and Δags1 strains, respectively, which the highest lipid concentrations of 7.2 and 7.9 g L-1 were obtained in the respective cultures. The mathematical models of the growth kinetics and lipid phenotypes of both fungal strains were developed, enabling to distinguish three lipid-producing stages, including low lipid-producing, lipid accumulation, and lipid turnover stages. The model validation showed good performances in all nitrogen sources tested for the WT, but only NaNO3 and mixed yeast extract/NH4Cl were fitted well for the Δags1. The difference in the period of lipid-producing stages between the WT and Δags1 indicated the metabolic alterations of A. oryzae by the defect of a gene involved in the cell wall biosynthesis, which exhibited benefits for bioprocessing practices in addition to the high productivities of biomass and lipid. These findings would further permit the manipulation in the metabolic hub of the fungal production platform for other industrial purposes.


Assuntos
Aspergillus oryzae/crescimento & desenvolvimento , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/genética , Nitrogênio/metabolismo , Aspergillus oryzae/genética , Fermentação , Deleção de Genes , Engenharia Genética , Cinética , Metabolismo dos Lipídeos , Modelos Teóricos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Fenótipo
15.
Front Microbiol ; 11: 546230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224108

RESUMO

Dihomo-γ-linolenic acid (DGLA; C20:3 n-6) is expected to dominate the functional ingredients market for its role in anti-inflammation and anti-proliferation. The DGLA production by the engineered strain of Aspergillus oryzae with overexpressing Pythium Δ6-desaturase and Δ6-elongase genes was investigated by manipulating the nutrient and fermentation regimes. Of the nitrogen sources tested, the maximum biomass and DGLA titers were obtained in the cultures using NaNO3 grown at pH 6.0. For establishing economically feasible process of DGLA production, the cost-effective medium was developed by using cassava starch hydrolysate (CSH) and NaNO3 as carbon and nitrogen sources, respectively. The supplementation with 1% (v/v) mother liquor (ML) into the CSH medium promoted the specific yield of DGLA production (Y DGLA / X ) comparable with the culture grown in the defined NaNO3 medium, and the DGLA proportion was over 22% in total fatty acid (TFA). Besides, the GLA was also generated at a similar proportion (about 25% in TFA). The mathematical models of the cultures grown in the defined NaNO3 and CSH/ML media were generated, describing that the lipid and DGLA were growth-associated metabolites corresponding to the relevant kinetic parameters of fermentations. The controlled mode of submerged fermentation of the engineered strain was explored for governing the PUFA biosynthesis and lipid-accumulating process in relation to the biomass production. This study provides an informative perspective in the n-6 fatty acid production through physiological manipulation, thus leading to a prospect in viable production of the DGLA-enriched oil by the engineered strain.

16.
Biology (Basel) ; 9(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825642

RESUMO

Cordyceps militaris is currently exploited for commercial production of specialty products as its biomass constituents are enriched in bioactive compounds, such as cordycepin. The rational process development is important for economically feasible production of high quality bioproducts. Light is an abiotic factor affecting the cultivation process of this entomopathogenic fungus, particularly in its carotenoid formation. To uncover the cell response to light exposure, this study aimed to systematically investigate the metabolic responses of C. militaris strain TBRC6039 using integrative genome-wide transcriptome and genome-scale metabolic network (GSMN)-driven analysis. The genome-wide transcriptome analysis showed 8747 expressed genes in the glucose and sucrose cultures grown under light-programming and dark conditions. Of them, 689 differentially expressed genes were significant in response to the light-programming exposure. Through integration with the GSMN-driven analysis using the improved network (iRT1467), the reporter metabolites, e.g., adenosine-5'-monophosphate (AMP) and 2-oxoglutarate, were identified when cultivated under the carotenoid-producing condition controlled by light-programming exposure, linking to up-regulations of the metabolic genes involved in glyoxalase system, as well as cordycepin and carotenoid biosynthesis. These results indicated that C. militaris had a metabolic control in acclimatization to light exposure through transcriptional co-regulation, which supported the cell growth and cordycepin production in addition to the accumulation of carotenoid as a photo-protective bio-pigment. This study provides a perspective in manipulating the metabolic fluxes towards the target metabolites through either genetic or physiological approaches.

17.
Gene ; 741: 144559, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32169630

RESUMO

The fungi in order Mortierellales are attractive producers for long-chain polyunsaturated fatty acids (PUFAs). Here, the genome sequencing and assembly of a novel strain of Mortierella sp. BCC40632 were done, yielding 65 contigs spanning of 49,964,116 total bases with predicted 12,149 protein-coding genes. We focused on the acetyl-CoA in relevant to its derived metabolic pathways for biosynthesis of macromolecules with biological functions, including PUFAs, eicosanoids and carotenoids. By comparative genome analysis between Mortierellales and Mucorales, the signature genetic characteristics of the arachidonic acid-producing strains, including Δ5-desaturase and GLELO-like elongase, were also identified in the strain BCC40632. Remarkably, this fungal strain contained only n-6 pathway of PUFA biosynthesis due to the absence of Δ15-desaturase or ω3-desaturase gene in contrast to other Mortierella species. Four putative enzyme sequences in the eicosanoid biosynthetic pathways were identified in the strain BCC40632 and others Mortierellale fungi, but were not detected in the Mucorales. Another unique metabolic trait of the Mortierellales was the inability in carotenoid synthesis as a result of the lack of phytoene synthase and phytoene desaturase genes. The findings provide a perspective in strain optimization for production of tailored-made products with industrial applications.


Assuntos
Acetilcoenzima A/biossíntese , Ácido Araquidônico/genética , Genoma Fúngico/genética , Mortierella/metabolismo , Acetilcoenzima A/genética , Ácido Araquidônico/biossíntese , Vias Biossintéticas/genética , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Mortierella/genética , Mucorales/genética , Mucorales/metabolismo , Ácido gama-Linolênico/genética , Ácido gama-Linolênico/metabolismo
18.
Cells ; 9(2)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050592

RESUMO

Beyond comparative genomics, we identified 85 sugar transporter genes in Cordyceps militaris, clustering into nine subfamilies as sequence- and phylogenetic-based functional classification, presuming the versatile capability of the fungal growths on a range of sugars. Further analysis of the global gene expression patterns of C. militaris showed 123 genes were significantly expressed across the sucrose, glucose, and xylose cultures. The sugar transporters specific for pentose were then identified by gene-set enrichment analysis. Of them, the putative pentose transporter, CCM_06358 gene, was highest expressed in the xylose culture, and its functional role in xylose transport was discovered by the analysis of conserved structural motifs. In addition, a battery of molecular modeling methods, including homology modeling, transport pathway analysis, residue interaction network combined with molecular mechanics Poisson-Boltzmann surface area simulation (MM-PBSA), was implemented for probing the structure and function of the selected pentose transporter (CCM_06358) as a representative of sugar transportome in C. militaris. Considering the network bottlenecks and structural organizations, we further identified key amino acids (Phe38 and Trp441) and their interactions with other residues, contributing the xylose transport function, as verified by binding free energy calculation. The strategy used herein generated remarkably valuable biological information, which is applicable for the study of sugar transportome and the structure engineering of targeted transporter proteins that might link to the production of bioactive compounds derived from xylose metabolism, such as cordycepin.


Assuntos
Carbono/metabolismo , Cordyceps/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metaboloma , Açúcares/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Transporte Biológico , Cordyceps/genética , Redes Reguladoras de Genes , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Termodinâmica , Transcriptoma/genética , Xilose/metabolismo
19.
Genomics ; 112(1): 629-636, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31022437

RESUMO

The responsive mechanism of C. militaris TBRC7358 on xylose utilization was investigated by comparative analysis of transcriptomes, growth kinetics and cordycepin productions. The result showed that the culture grown on xylose exhibited high production yield of cordycepin on dry biomass. Comparing xylose to other carbon sources, a set of significantly up-regulated genes in xylose were enriched in pentose and glucuronate interconversion, and cordycepin biosynthesis. After validating up-regulated genes using quantitative real-time PCR, interestingly, putative alternative 3'-AMP-associated metabolic route on cordycepin biosynthesis was identified. Through reporter metabolites analysis of C. militaris, significant metabolites (e.g., AMP, glycine and L-glutamate) were identified guiding involvement of growth and cordycepin production. These findings suggested that there was a cooperative mechanism in transcriptional control of the supplying precursors pool directed towards the cordycepin biosynthesis through main and putative alternative metabolic routes for leverage of cell growth and cordycepin production on xylose of C. militaris strain TBRC7358.


Assuntos
Cordyceps , Desoxiadenosinas/biossíntese , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Xilose/metabolismo , Cordyceps/genética , Cordyceps/metabolismo , Desoxiadenosinas/genética , Reação em Cadeia da Polimerase em Tempo Real , Xilose/genética
20.
Curr Microbiol ; 76(12): 1443-1451, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541261

RESUMO

U6 RNA polymerase III promoter (PU6), which is a key element in controlling the generation of single-guide RNA (sgRNA) for gene editing through CRISPR-Cas9 system, was investigated in this work. Using bioinformatics approach, two novel U6 ribonucleic acid (U6 RNA) sequences of Aspergillus niger were identified, showing that they had conserved motifs similar to other U6 RNAs. The putative PU6 located at the upstream sequence of A. niger U6 RNA exhibited the consensus motif, CCAATYA, and the TATA box which shared highly conserved characteristics across Aspergilli, whereas the A- and B-boxes were found at the intragenic and downstream of the structural genes, respectively. Using Aspergillus oryzae as a workhorse system, the function of A. niger PU6s for controlling the transcripts of sgRNA was verified, in which the orotidine-5'-phosphate decarboxylase (pyrG) sequence was used as a target for gene disruption through CRISPR-Cas9 system. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis of the selected pyrG auxotrophic strains showed the expression of sgRNA, indicating that the non-native promoters could efficiently drive sgRNA expression in A. oryzae. These identified promoters are useful genetic tools for precise engineering of metabolic pathways in the industrially important fungus through the empowered CRISPR-Cas9-associated gene-editing system.


Assuntos
Aspergillus oryzae/genética , Sistemas CRISPR-Cas , Proteínas Fúngicas/genética , Edição de Genes , Regiões Promotoras Genéticas , RNA Polimerase III/genética , RNA Fúngico/genética , RNA Guia de Cinetoplastídeos/genética , Aspergillus oryzae/enzimologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Polimerase III/metabolismo , RNA Fúngico/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...