Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(40): e2407655121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39284038

RESUMO

As sand moves across Earth's landscapes, the shapes of individual grains evolve, and microscopic textures accumulate on their surfaces. Because transport processes vary between environments, the shape and suite of microtextures etched on sand grains provide insights into their transport histories. For example, previous efforts to link microtextures to transport environments have demonstrated that they can provide important information about the depositional environments of rocks with few other indicators. However, such analyses rely on 1) subjective human description of microtextures, which can yield biased, error-prone results; 2) nonstandard lists of microtextures; and 3) relatively large sample sizes (>20 grains) to obtain reliable results, the manual documentation of which is extremely labor intensive. These drawbacks have hindered broad adoption of the technique. We address these limitations by developing a deep neural network model, SandAI, that classifies scanning electron microscope images of modern sand grains by transport environment with high accuracy. The SandAI model was developed using images of sand grains from modern environments around the globe. Training data encompass the four most common terrestrial environments: fluvial, eolian, glacial, and beach. We validate the model on quartz grains from modern sites unknown to it, and Jurassic-Pliocene sandstones of known depositional environments. Next, the model is applied to two samples of the Cryogenian Bråvika Member (of contested origin), yielding insights into periglacial systems associated with Snowball Earth. Our results demonstrate the robustness and versatility of the model in quickly and automatically constraining the transport histories recorded in individual grains of quartz sand.

2.
Nat Commun ; 15(1): 1968, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438390

RESUMO

Stabilization of riverbanks by vegetation has long been considered necessary to sustain single-thread meandering rivers. However, observation of active meandering in modern barren landscapes challenges this assumption. Here, we investigate a globally distributed set of modern meandering rivers with varying riparian vegetation densities, using satellite imagery and statistical analyses of meander-form descriptors and migration rates. We show that vegetation enhances the coefficient of proportionality between channel curvature and migration rates at low curvatures, and that this effect wanes in curvier channels irrespective of vegetation density. By stabilizing low-curvature reaches and allowing meanders to gain sinuosity as channels migrate laterally, vegetation quantifiably affects river morphodynamics. Any causality between denser vegetation and higher meander sinuosity, however, cannot be inferred owing to more frequent avulsions in modern non-vegetated environments. By illustrating how vegetation affects channel mobility and floodplain reworking, our findings have implications for assessing carbon stocks and fluxes in river floodplains.

3.
Nat Commun ; 13(1): 7156, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418350

RESUMO

Sand mobilized by wind forms decimeter-scale impact ripples and decameter-scale or larger dunes on Earth and Mars. In addition to those two bedform scales, orbital and in situ images revealed a third distinct class of larger meter-scale ripples on Mars. Since their discovery, two main hypotheses have been proposed to explain the formation of large martian ripples-that they originate from the growth in wavelength and height of decimeter-scale ripples or that they arise from the same hydrodynamic instability as windblown dunes or subaqueous bedforms instead. Here we provide evidence that large martian ripples form from the same hydrodynamic instability as windblown dunes and subaqueous ripples. Using an artificial neural network, we characterize the morphometrics of over a million isolated barchan dunes on Mars and analyze how their size and shape vary across Mars' surface. We find that the size of Mars' smallest dunes decreases with increasing atmospheric density with a power-law exponent predicted by hydrodynamic theory, similarly to meter-size ripples, tightly bounding a forbidden range in bedform sizes. Our results provide key evidence for a unifying model for the formation of subaqueous and windblown bedforms on planetary surfaces, offering a new quantitative tool to decipher Mars' atmospheric evolution.


Assuntos
Marte , Meio Ambiente Extraterreno , Planeta Terra , Hidrodinâmica , Redes Neurais de Computação
4.
Geophys Res Lett ; 49(8): e2021GL097605, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860461

RESUMO

Titan is a sedimentary world, with lakes, rivers, canyons, fans, dissected plateaux, and sand dunes. Sediments on Saturn's moon are thought to largely consist of mechanically weak organic grains, prone to rapid abrasion into dust. Yet, Titan's equatorial dunes have likely been active for 10s-100s kyr. Sustaining Titan's dunes over geologic timescales requires a mechanism that produces sand-sized particles at equatorial latitudes. We explore the hypothesis that a combination of abrasion, when grains are transported by winds or methane rivers, and sintering, when they are at rest, could produce sand grains that maintain an equilibrium size. Our model demonstrates that seasonal sediment transport may produce sand under Titan's surface conditions and could explain the latitudinal zonation of Titan's landscapes. Our findings support the hypothesis of global, source-to-sink sedimentary pathways on Titan, driven by seasons, and mediated by episodic abrasion and sintering of organic sand by rivers and winds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA