Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1659, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966141

RESUMO

AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators.


Assuntos
Canais de Cálcio , Receptores de AMPA , Receptores de AMPA/metabolismo , Ligantes , Canais de Cálcio/metabolismo , Transmissão Sináptica
2.
Elife ; 112022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35975975

RESUMO

To clarify the determinants of agonist efficacy in pentameric ligand-gated ion channels, we examined a new compound, aminomethanesulfonic acid (AMS), a molecule intermediate in structure between glycine and taurine. Despite wide availability, to date there are no reports of AMS action on glycine receptors, perhaps because AMS is unstable at physiological pH. Here, we show that at pH 5, AMS is an efficacious agonist, eliciting in zebrafish α1 glycine receptors a maximum single-channel open probability of 0.85, much greater than that of ß-alanine (0.54) or taurine (0.12), and second only to that of glycine itself (0.96). Thermodynamic cycle analysis of the efficacy of these closely related agonists shows supra-additive interaction between changes in the length of the agonist molecule and the size of the anionic moiety. Single particle cryo-electron microscopy structures of AMS-bound glycine receptors show that the AMS-bound agonist pocket is as compact as with glycine, and three-dimensional classification demonstrates that the channel populates the open and the desensitized states, like glycine, but not the closed intermediate state associated with the weaker partial agonists, ß-alanine and taurine. Because AMS is on the cusp between full and partial agonists, it provides a new tool to help us understand agonist action in the pentameric superfamily of ligand-gated ion channels.


Assuntos
Receptores de Glicina , Peixe-Zebra , Animais , Microscopia Crioeletrônica , Glicina , Ácidos Sulfônicos , Taurina/farmacologia , beta-Alanina/farmacologia
3.
Nat Commun ; 13(1): 734, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136046

RESUMO

AMPA-type glutamate receptors (AMPARs) mediate rapid signal transmission at excitatory synapses in the brain. Glutamate binding to the receptor's ligand-binding domains (LBDs) leads to ion channel activation and desensitization. Gating kinetics shape synaptic transmission and are strongly modulated by transmembrane AMPAR regulatory proteins (TARPs) through currently incompletely resolved mechanisms. Here, electron cryo-microscopy structures of the GluA1/2 TARP-γ8 complex, in both open and desensitized states (at 3.5 Å), reveal state-selective engagement of the LBDs by the large TARP-γ8 loop ('ß1'), elucidating how this TARP stabilizes specific gating states. We further show how TARPs alter channel rectification, by interacting with the pore helix of the selectivity filter. Lastly, we reveal that the Q/R-editing site couples the channel constriction at the filter entrance to the gate, and forms the major cation binding site in the conduction path. Our results provide a mechanistic framework of how TARPs modulate AMPAR gating and conductance.


Assuntos
Canais de Cálcio/metabolismo , Receptores de AMPA/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/isolamento & purificação , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Mutação , Técnicas de Patch-Clamp , Domínios Proteicos/genética , Ratos , Receptores de AMPA/genética , Receptores de AMPA/isolamento & purificação , Receptores de AMPA/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transmissão Sináptica , Transfecção
4.
J Physiol ; 600(2): 333-347, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802146

RESUMO

Many pentameric ligand-gated ion channels are modulated by extracellular pH. Glycine receptors (GlyRs) share this property, but it is not well understood how they are affected by pH changes. Whole cell experiments on HEK293 cells expressing zebrafish homomeric α1 GlyR confirmed previous reports that acidic pH (6.4) reduces GlyR sensitivity to glycine, whereas alkaline pH (8.4) has small or negligible effects. In addition to that, at pH 6.4 we observed a reduction in the maximum responses to the partial agonists ß-alanine and taurine relative to the full agonist glycine. In cell-attached single-channel recording, low pH reduced agonist efficacy, as the maximum open probability decreased from 0.97, 0.91 and 0.66 to 0.93, 0.57 and 0.34 for glycine, ß-alanine and taurine, respectively, reflecting a threefold decrease in efficacy equilibrium constants for all three agonists. We also tested the effect of pH 6.4 in conditions that replicate those at the native synapse, recording outside-out currents elicited by fast application of millisecond pulses of agonists on α1 and α1ß GlyR, at a range of intracellular chloride concentrations. Acidic pH reduced the area under the curve of the currents, by reducing peak amplitude, slowing activation and speeding deactivation. Our results show that acidification of the extracellular pH by one unit, as may occur in pathological conditions such as ischaemia, impairs GlyR gating and is likely to reduce the effectiveness of glycinergic synaptic inhibition. KEY POINTS: Extracellular pH in the central nervous system (CNS) is known to shift towards acidic values during pathophysiological conditions such as ischaemia and seizures. Acidic extracellular pH is known to affect GABAergic inhibitory synapses, but its effect on signals mediated by glycine receptors (GlyR) is not well characterised. Moderate acidic conditions (pH 6.4) reduce the maximum single channel open probability of recombinant homomeric GlyRs produced by the neurotransmitter glycine or other agonists, such as ß-alanine and taurine. When glycine was applied with a piezoelectric stepper to outside out patches, to simulate its fast rise and short duration at the synapse, responses became shorter and smaller at pH 6.4. The effect was also observed with physiologically low intracellular chloride and in mammalian heteromeric GlyRs. This suggests that acidic pH is likely to reduce the strength of inhibitory signalling at glycinergic synapses.


Assuntos
Glicina , Receptores de Glicina , Ácidos , Animais , Glicina/farmacologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Técnicas de Patch-Clamp , Ratos , Peixe-Zebra
5.
Faraday Discuss ; 232(0): 358-374, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34647559

RESUMO

Heterogeneity in cell membrane structure, typified by microdomains with different biophysical and biochemical properties, is thought to impact on a variety of cell functions. Integral membrane proteins act as nanometre-sized probes of the lipid environment and their thermally-driven movements can be used to report local variations in membrane properties. In the current study, we have used total internal reflection fluorescence microscopy (TIRFM) combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity. We used a quadrat sampling method and show how statistical tests for membrane heterogeneity can be conducted by analysing the paths of many molecules that pass through the same unit area of membrane. We describe experiments performed on cultured primary cells, stable cell lines and ex vivo tissue slices using a variety of membrane proteins, under different imaging conditions. In some cell types, we find no evidence for heterogeneity in mobility across the plasma membrane, but in others we find statistically significant differences with some regions of membrane showing significantly higher viscosity than others.


Assuntos
Proteínas de Membrana , Imagem Individual de Molécula , Membrana Celular , Estruturas da Membrana Celular , Microscopia de Fluorescência
6.
J Biol Chem ; 296: 100387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617876

RESUMO

Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, ß-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.


Assuntos
Glicina/farmacologia , Receptores de Glicina/agonistas , Taurina/farmacologia , beta-Alanina/farmacologia , Ácido gama-Aminobutírico/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Humanos , Técnicas de Patch-Clamp/métodos , Domínios Proteicos , Receptores de Glicina/metabolismo , Relação Estrutura-Atividade , Peixe-Zebra
7.
Cell ; 184(4): 957-968.e21, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33567265

RESUMO

Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.


Assuntos
Ativação do Canal Iônico , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Microscopia Crioeletrônica , Glicina , Células HEK293 , Humanos , Imageamento Tridimensional , Maleatos/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Neurotransmissores/metabolismo , Domínios Proteicos , Receptores de Glicina/genética , Receptores de Glicina/ultraestrutura , Estireno/química , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
8.
J Physiol ; 598(16): 3417-3438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445491

RESUMO

KEY POINTS: Loss-of-function mutations in proteins found at glycinergic synapses, most commonly in the α1 subunit of the glycine receptor (GlyR), cause the startle disease/hyperekplexia channelopathy in man. It was recently proposed that the receptors responsible are presynaptic homomeric GlyRs, rather than postsynaptic heteromeric GlyRs (which mediate glycinergic synaptic transmission), because heteromeric GlyRs are less affected by many startle mutations than homomers. We examined the α1 startle mutation S270T, at the extracellular end of the M2 transmembrane helix. Recombinant heteromeric GlyRs were less impaired than homomers by this mutation when we measured their response to equilibrium applications of glycine. However, currents elicited by synaptic-like millisecond applications of glycine to outside-out patches were much shorter (7- to 10-fold) in all mutant receptors, both homomeric and heteromeric. Thus, the synaptic function of heteromeric receptors is likely to be impaired by the mutation. ABSTRACT: Human startle disease is caused by mutations in glycine receptor (GlyR) subunits or in other proteins associated with glycinergic synapses. Many startle mutations are known, but it is hard to correlate the degree of impairment at molecular level with the severity of symptoms in patients. It was recently proposed that the disease is caused by disruption in the function of presynaptic homomeric GlyRs (rather than postsynaptic heteromeric GlyRs), because homomeric GlyRs are more sensitive to loss-of-function mutations than heteromers. Our patch-clamp recordings from heterologously expressed GlyRs characterised in detail the functional consequences of the α1S270T startle mutation, which is located at the extracellular end of the pore lining M2 transmembrane segment (18'). This mutation profoundly decreased the maximum single-channel open probability of homomeric GlyRs (to 0.16; cf. 0.99 for wild type) but reduced only marginally that of heteromeric GlyRs (0.96; cf. 0.99 for wild type). However, both heteromeric and homomeric mutant GlyRs became less sensitive to the neurotransmitter glycine. Responses evoked by brief, quasi-synaptic pulses of glycine onto outside-out patches were impaired in mutant receptors, as deactivation was approximately 10- and 7-fold faster for homomeric and heteromeric GlyRs, respectively. Our data suggest that the α1S270T mutation is likely to affect the opening step in GlyR activation. The faster decay of synaptic currents mediated by mutant heteromeric GlyRs is expected to reduce charge transfer at the synapse, despite the high equilibrium open probability of these mutant channels.


Assuntos
Hiperecplexia , Glicina , Humanos , Mutação , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Transmissão Sináptica
9.
J Biol Chem ; 292(12): 5031-5042, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28174298

RESUMO

Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.


Assuntos
Hiperecplexia/genética , Mutação Puntual , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Glicina/metabolismo , Células HEK293 , Humanos , Hiperecplexia/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptores de Glicina/química , Sarcosina/metabolismo , Alinhamento de Sequência
10.
J Gen Physiol ; 145(1): 23-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25548135

RESUMO

Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1ß glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.


Assuntos
Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Propilaminas/farmacologia , Proteínas de Bactérias/agonistas , Erwinia/metabolismo , Células HEK293 , Humanos , Cinética , Canais Iônicos de Abertura Ativada por Ligante/agonistas
11.
Biochemistry ; 53(38): 6041-51, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25184435

RESUMO

The human glycine receptor (hGlyR) is an anion-permeable ligand-gated channel that is part of a larger superfamily of receptors called the Cys-loop family. hGlyRs are particularly amenable to single-channel recordings, thus making them a model experimental system for understanding the Cys-loop receptor family in general. Understanding the relationship between agonist binding and efficacy in Cys-loop receptors should improve our future prospects for making specific agonists or antagonists. However, at present, there is no high-resolution structure for the complete hGlyR, and thus, modeling is needed to provide a physical framework on which to interpret single-channel data. The structure of the glutamate-gated chloride channel from Caenorhabditis elegans shows a much higher level of sequence identity to human hGlyR than previous templates such as AChBP or the bacterial channels, GLIC and ELIC. Thus, we constructed a model of the hGlyR and validated it against previously reported mutagenesis data. We used molecular dynamics to refine the model and to explore binding of both an agonist (glycine) and an antagonist (strychnine). The model shows excellent agreement with previous data but also suggests some unique features: (i) a water molecule that forms part of the binding site and allows us to account for some previous results that were difficult to reconcile, (ii) an interaction of the glycine agonist with S129, and (iii) an effect from E211, both of which we confirmed with new site-directed mutagenesis and patch clamp recordings. Finally, examination of the simulations suggests that strychnine binding induces movement to a conformational state distinct from the glycine-bound or apo state, not only within the ligand-binding domain but also in the transmembrane domain.


Assuntos
Receptores de Glicina/agonistas , Receptores de Glicina/antagonistas & inibidores , Domínio Catalítico , Humanos , Modelos Moleculares , Conformação Proteica , Receptores de Glicina/metabolismo
12.
J Physiol ; 591(13): 3289-308, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23613537

RESUMO

Glycine receptors mediate fast synaptic inhibition in spinal cord and brainstem. Two α subunits are present in adult neurones, α1, which forms most of the synaptic glycine receptors, and α3. The physiological role of α3 is not known, despite the fact that α3 expression is concentrated in areas involved in nociceptive processing, such as the superficial dorsal horn. In the present study, we characterized the kinetic properties of rat homomeric α3 glycine receptors heterologously expressed in HEK293 cells. We analysed steady state single channel activity at a range of different glycine concentrations by fitting kinetic schemes and found that α3 channels resemble α1 receptors in their high maximum open probability (99.1% cf. 98% for α1), but differ in that maximum open probability is reached when all five binding sites are occupied by glycine (cf. three out of five sites for α1). α3 activation was best described by kinetic schemes that allow the channel to open also when partially liganded and that contain more than the minimum number of shut states, either as desensitized distal states (Jones and Westbrook scheme) or as pre-open gating intermediates (flip scheme). We recorded also synaptic-like α3 currents elicited by the rapid application of 1 ms pulses of high concentration glycine to outside-out patches. These currents had fast deactivation, with a time constant of decay of 9 ms. Thus, if native synaptic currents can be mediated by α3 glycine receptors, they are likely to be very close in their kinetics to α1-mediated synaptic events.


Assuntos
Receptores de Glicina/fisiologia , Animais , Sítios de Ligação , Células HEK293 , Humanos , Cinética , Ratos , Transmissão Sináptica
14.
J Neurosci ; 32(4): 1336-52, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279218

RESUMO

Loss-of-function mutations in human glycine receptors cause hyperekplexia, a rare inherited disease associated with an exaggerated startle response. We have studied a human disease mutation in the M2-M3 loop of the glycine receptor α1 subunit (K276E) using direct fitting of mechanisms to single-channel recordings with the program HJCFIT. Whole-cell recordings from HEK293 cells showed the mutation reduced the receptor glycine sensitivity. In single-channel recordings, rat homomeric α1 K276E receptors were barely active, even at 200 mM glycine. Coexpression of the ß subunit partially rescued channel function. Heteromeric mutant channels opened in brief bursts at 300 µM glycine (a concentration that is near-maximal for wild type) and reached a maximum one-channel open probability of about 45% at 100 mm glycine (compared to 96% for wild type). Distributions of apparent open times contained more than one component in high glycine and, therefore, could not be described by mechanisms with only one fully liganded open state. Fits to the data were much better with mechanisms in which opening can also occur from more than one fully liganded intermediate (e.g., "primed" models). Brief pulses of glycine (∼3 ms, 30 mM) applied to mutant channels in outside-out patches activated currents with a slower rise time (1.5 ms) than those of wild-type channels (0.2 ms) and a much faster decay. These features were predicted reasonably well by the mechanisms obtained from fitting single-channel data. Our results show that, by slowing and impairing channel gating, the K276E mutation facilitates the detection of closed reaction intermediates in the activation pathway of glycine channels.


Assuntos
Ativação do Canal Iônico/genética , Mutação/fisiologia , Receptores de Glicina/metabolismo , Reflexo Anormal/fisiologia , Rigidez Muscular Espasmódica/genética , Animais , Glicina/farmacologia , Glicina/fisiologia , Células HEK293 , Humanos , Ratos , Receptores de Glicina/genética , Reflexo de Sobressalto/fisiologia , Transdução de Sinais/genética
15.
J Gen Physiol ; 137(2): 197-216, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21282399

RESUMO

The α2 glycine receptor (GlyR) subunit, abundant in embryonic neurons, is replaced by α1 in the adult nervous system. The single-channel activity of homomeric α2 channels differs from that of α1-containing GlyRs, as even at the lowest glycine concentration (20 µM), openings occurred in long (>300-ms) groups with high open probability (P(open); 0.96; cell-attached recordings, HEK-expressed channels). Shut-time intervals within groups of openings were dominated by short shuttings of 5-10 µs. The lack of concentration dependence in the groups of openings suggests that they represent single activations, separated by very long shut times at low concentrations. Several putative mechanisms were fitted by maximizing the likelihood of the entire sequence of open and shut times, with exact missed-events allowance (program hjcfit). Records obtained at several glycine concentrations were fitted simultaneously. The adequacy of the different schemes was judged by the accuracy with which they predicted not only single-channel data but also the time course and concentration dependence of macroscopic responses elicited by rapid glycine applications to outside-out patches. The data were adequately described only with schemes incorporating a reaction intermediate in the activation, and the best was a flip mechanism with two binding sites and one open state. Fits with this mechanism showed that for α2 channels, the opening rate constant is very fast, ∼130,000 s(-1), much as for α1ß GlyRs (the receptor in mature synapses), but the estimated true mean open time is 20 times longer (around 3 ms). The efficacy for the flipping step and the binding affinity were lower for α2 than for α1ß channels, but the overall efficacies were similar. As we previously showed for α1 homomeric receptors, in α2 glycine channels, maximum P(open) is achieved when fewer than all five of the putative binding sites in the pentamer are occupied by glycine.


Assuntos
Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Humanos , Ativação do Canal Iônico/fisiologia , Cinética , Funções Verossimilhança , Ratos , Receptores de Glicina/genética
16.
J Physiol ; 587(Pt 21): 5045-72, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19752108

RESUMO

Choline has been used widely as an agonist for the investigation of gain-of-function mutants of the nicotinic acetylcholine receptor. It is useful because it behaves like a partial agonist. The efficacy of choline is difficult to measure because choline blocks the channel at concentrations about four times lower than those that activate it. We have fitted activation mechanisms to single-channel activity elicited from HEK-expressed human recombinant muscle nicotinic receptors by choline and by tetramethylammonium (TMA). Channel block by the agonist was incorporated into the mechanisms that were fitted, and block was found not to be selective for the open state. The results also suggest that channel block is very fast and that the channel can shut almost as fast as normal when the blocker was bound. Single-channel data are compatible with a mechanism in which choline is actually a full agonist, its maximum response being limited only by channel block. However, they are also compatible with a mechanism incorporating a pre-opening conformation change ('flip') in which choline is a genuine partial agonist. The latter explanation is favoured by concentration jump experiments, and by the fact that only this mechanism fits the TMA data. We propose that choline, like TMA, is a partial agonist because it is very ineffective (approximately 600-fold less than acetylcholine) at eliciting the initial, pre-opening conformation change. Once flipping has occurred, all agonists, even choline, open the channel with similar efficiency.


Assuntos
Colina/administração & dosagem , Ativação do Canal Iônico/fisiologia , Rim/metabolismo , Músculo Esquelético/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Rim/efeitos dos fármacos , Agonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem
17.
Nature ; 454(7205): 722-7, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18633353

RESUMO

Partial agonists are ligands that bind to receptors but produce only a small maximum response even at concentrations where all receptors are occupied. In the case of ligand-activated ion channels, it has been supposed since 1957 that partial agonists evoke a small response because they are inefficient at eliciting the change of conformation between shut and open states of the channel. We have investigated partial agonists for two members of the nicotinic superfamily-the muscle nicotinic acetylcholine receptor and the glycine receptor-and find that the open-shut reaction is similar for both full and partial agonists, but the response to partial agonists is limited by an earlier conformation change ('flipping') that takes place while the channel is still shut. This has implications for the interpretation of structural studies, and in the future, for the design of partial agonists for therapeutic use.


Assuntos
Agonismo Parcial de Drogas , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Linhagem Celular , Glicina/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Músculos/metabolismo , Conformação Proteica , Subunidades Proteicas/agonistas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Compostos de Amônio Quaternário/farmacologia , Ratos , Receptores de Glicina/agonistas , Receptores de Glicina/química , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Relação Estrutura-Atividade , Taurina/farmacologia
18.
Bioelectrochemistry ; 67(1): 101-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15967404

RESUMO

The change of the pH of a NaCl solution (139-149 mM NaCl) buffered with 5-15 mM sodium phosphates (pH 7.4) during electromanipulation was studied. It has been determined that an increase in the pH value of electroporation solution of a whole chamber volume, caused by the application of electric field pulses, commonly used in cell electromanipulation procedures, can exceed 1-2 pH units. Several materials for the cathode were tested. In all cases a stainless steel anode was utilized. The aluminum cathode gave a two-fold greater DeltapH in comparison with platinum, copper or stainless steel cathodes. In addition, a substantial release of aluminum (up to 1 mg/l) from the cathode was observed. It has also been found that the shift in pH depended on the medium conductivity: DeltapH of the solution, in which sucrose was substituted for NaCl, was about 5 times less. On the basis of the results obtained here, to avoid the plausible undesirable consequences of the cathodic electrolysis processes, in particular under the conditions of strong electric treatment, it could be recommended that chambers with aluminum electrodes not be utilized and one should use strongly buffered solutions of low conductivity and alternating current (sine or square wave) bipolar electric pulses.


Assuntos
Eletricidade , Concentração de Íons de Hidrogênio , Fosfatos/química , Cloreto de Sódio/química , Soluções/química
19.
J Neurophysiol ; 92(3): 1276-84, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15331641

RESUMO

The nucleus accumbens (NAc) of the ventral striatum is involved in attention, motivation, movement, learning, reward, and addiction. GABAergic medium spiny projection neurons that make up approximately 90% of the neuronal population are commonly driven by convergent bursts of afferent excitation. We monitored spiny projection neurons in mouse striatal slices while applying stimulus trains to mimic bursts of excitation. A stimulus train evoked a simple, short-lived postsynaptic response from CA1 hippocampal pyramidal neurons, but the train evoked a complex series of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) from the NAc spiny projection neurons. As is commonly seen with projection neurons, the EPSC amplitudes initially displayed facilitation followed by depression, and that pattern was sensitive to the extracellular calcium concentration. In addition, there were two other novel observations. The spiny projection neurons responded to the stimulus train with a prolonged depolarization that was accompanied by a posttrain increase of spontaneous glutamatergic synaptic activity. Blocking AMPA/kainate glutamate receptors strongly inhibited the evoked EPSP/EPSCs, the posttrain spontaneous synaptic activity, and the prolonged depolarization. A potassium channel inhibitor increased and extended the prolonged postsynaptic depolarization, causing a long-lasting depolarized plateau potential. Our results indicate that burst-like activity along ventral striatal afferents is extended in time by additional spontaneous glutamate release that is integrated by the postsynaptic spiny projection neurons into a prolonged depolarization. The results suggest that the posttrain quantal glutamate release helps to blend and maintain multiple afferent inputs. That convergent excitation is further integrated by the postsynaptic neuron into a prolonged depolarization that may contribute to the depolarized "up state" observed in vivo.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios Aferentes/fisiologia , Núcleo Accumbens/fisiologia , Animais , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos
20.
Neurosci Lett ; 346(3): 177-81, 2003 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12853113

RESUMO

Since constitutively-high intracellular Ca(2+) ([Ca(2+)](i)) may confer hypoglossal motoneurons special vulnerability to excitoxic damage, we investigated the spatiotemporal dynamics of [Ca(2+)](i) and its relation to spike firing of rat hypoglossal motoneurons recorded under whole-cell patch clamp coupled with high resolution [Ca(2+)](i) imaging. A rise in [Ca(2+)](i), appearing in conjunction with single action potentials and becoming larger during spike trains, was first detected immediately beneath the cell membrane area, peaked 10-20 ms after each spike, and propagated to the cell core with slow decay time. Depletion of ryanodine-sensitive [Ca(2+)](i) stores by caffeine increased background [Ca(2+)](i), augmented the spike medium afterhyperpolarization, slowed down the action potential firing rate and depolarized cells (after an early hyperpolarization). The decay time constant of [Ca(2+)](i) transients was more than doubled by caffeine, although peak [Ca(2+)](i) remained unchanged. It is suggested that the main role of caffeine-sensitive stores was to buffer [Ca(2+)](i) elevated by sustained firing and to control spike accommodation.


Assuntos
Cafeína/farmacologia , Cálcio/fisiologia , Nervo Hipoglosso/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Potenciais de Ação , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Corantes Fluorescentes , Nervo Hipoglosso/citologia , Nervo Hipoglosso/fisiologia , Técnicas In Vitro , Líquido Intracelular/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Compostos Orgânicos , Técnicas de Patch-Clamp , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...