Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetica ; 135(1): 95-122, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18392559

RESUMO

Genetic diversity of a set of 71 wheat accessions, including 53 biotype 2 Russian wheat aphid (RWA2)-resistant landraces and 18 RWA2 susceptible accessions, was assessed by examining molecular variation at multiple microsatellite (SSR) loci. Fifty-one wheat SSR primer pairs were used, 81 SSR loci were determined, and 545 SSR alleles were detected. These SSR loci covered all the three genomes, 21 chromosomes, and at least 41 of the 42 chromosome arms. Diversity values averaged over SSR loci were high with mean number of SSR alleles/locus = 6.7, mean Shannon's index (H) = 1.291, and mean Nei's gene diversity (He) = 0.609. The three wheat genomes ranked as A > D > B and the homoeologous groups ranked as 7 > 3 > 1 > 2 > 6 > 5 > 4 based on the number of alleles per locus. Xgwm136 on chromosome arm 1AS is the most polymorphic SSR locus with the largest number of observed and effective alleles and the highest H and He. Among all 2485 pairs of wheat accessions, genetic distance (GD) ranged from 0.054 to 1.933 and averaged 0.9832. A dendrogram based on GD matrix showed that all the wheat accessions could be grouped into distinct clusters. Most of the susceptible cultivars (13/18) were clustered into groups that contains all or mostly susceptible accessions. Most of the U.S. cultivars belong to a group that is distinguishable from all the different RWA2 resistant groups. Diversity analysis was also conducted separately for subgroups containing 53 RWA2-resistant accessions and 18 RWA2-susceptible accessions. Association mapping revealed 28 SSR loci significantly associated with leaf chlorosis, and 8 with leaf rolling. New chromosome regions associated with RWA2 resistance were detected, and indicated existence of new RWA resistance genes located on chromosomes of all other homoeologous groups in addition to the groups 1 and 7 in bread wheat. This information is helpful for development of mapping populations for RWA2 resistance genes from different phylogenetic groups, and for wise utilization of the RWA-resistant germplasm in wheat breeding programs.


Assuntos
Afídeos , Genes de Plantas , Repetições de Microssatélites , Polimorfismo Genético , Triticum/genética , Triticum/imunologia , Alelos , Animais , Mapeamento Cromossômico , Frequência do Gene , Heterozigoto , Filogenia , Federação Russa
2.
Genome ; 49(5): 531-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16767178

RESUMO

The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Triticum/genética , Triticum/metabolismo , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Coleta de Dados , Bases de Dados Genéticas , Biblioteca Gênica , Genes de Plantas , Filogenia , Poliploidia , Distribuição Tecidual , Triticum/crescimento & desenvolvimento
3.
Genetics ; 168(2): 585-93, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514037

RESUMO

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Assuntos
Mapeamento Cromossômico , Biologia Computacional , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas/química , Deleção de Genes , Triticum/genética , Southern Blotting , Sondas de DNA , Biblioteca Gênica
4.
Genetics ; 168(2): 609-23, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514039

RESUMO

A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Oryza/genética , Ploidias , Triticum/genética , Genes de Plantas , Genoma de Planta , Alinhamento de Sequência
5.
Genetics ; 168(2): 625-37, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514040

RESUMO

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Ploidias , Alinhamento de Sequência
6.
Genetics ; 168(2): 651-63, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514042

RESUMO

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Triticum/genética , Deleção de Genes , Duplicação Gênica , Biblioteca Gênica , Genoma de Planta
7.
Genetics ; 168(2): 677-86, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514044

RESUMO

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Deleção de Genes , Genes de Plantas , Triticum/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma de Planta , Alinhamento de Sequência
8.
Genetics ; 168(2): 665-76, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514043

RESUMO

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Etiquetas de Sequências Expressas , Genoma de Planta , Alinhamento de Sequência
9.
Genetics ; 168(2): 687-99, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514045

RESUMO

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Triticum/genética , Deleção de Genes , Duplicação Gênica , Marcadores Genéticos , Genoma de Planta , Hordeum/genética , Oryza/genética , Alinhamento de Sequência
10.
Genetics ; 168(2): 701-12, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514046

RESUMO

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Genoma de Planta , Triticum/genética , Marcadores Genéticos , Ploidias , Locos de Características Quantitativas , Alinhamento de Sequência
11.
Genome ; 47(1): 179-89, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15060614

RESUMO

The primary objective of this study was to elucidate gene organization and to integrate the genetic linkage map for barley (Hordeum vulgare L.) with a physical map using ultrasensitive fluorescence in situ hybridization (FISH) techniques for detecting signals from restriction fragment length polymorphism (RFLP) clones. In the process, a single landmark plasmid, p18S5Shor, was constructed that identified and oriented all seven of the chromosome pairs. Plasmid p18S5Shor was used in all hybridizations. Fourteen cDNA probes selected from the linkage map for barley H. vulgare 'Steptoe' x H. vulgare 'Morex' (Kleinhofs et al. 1993) were mapped using an indirect tyramide signal amplification technique and assigned to a physical location on one or more chromosomes. The haploid barley genome is large and a complete physical map of the genome is not yet available; however, it was possible to integrate the linkage map and the physical locations of these cDNAs. An estimate of the ratio of base pairs to centimorgans was an average of 1.5 Mb/cM in the distal portions of the chromosome arms and 89 Mb/cM near the centromere. Furthermore, while it appears that the current linkage maps are well covered with markers along the length of each arm, the physical map showed that there are large areas of the genome that have yet to be mapped.


Assuntos
Hordeum/genética , Hibridização in Situ Fluorescente/métodos , Mapeamento Físico do Cromossomo , DNA Complementar/genética , Plasmídeos/genética , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...