Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Med Sci Sports Exerc ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742855

RESUMO

PURPOSE: Approximately 30% of people infected with COVID-19 require hospitalization and 20% of them are admitted to an intensive care unit (ICU). Most of these patients experience symptoms of fatigue weeks post-ICU, so understanding the factors associated with fatigue in this population is crucial. METHODS: Fifty-nine patients [38-78 yr] hospitalized in ICU for COVID-19 infection for 32 [6-80] days including 23 [3-57] days of mechanical ventilation, visited the laboratory on two separate occasions. The first visit occurred 52 ± 15 days after discharge and was dedicated to questionnaires, blood sampling and cardiopulmonary exercise testing, while measurements of the knee extensors neuromuscular function and performance fatigability were performed in the second visit 7 ± 2 days later. RESULTS: Using the FACIT-F questionnaire, 56% of patients were classified as fatigued. Fatigued patients had worse lung function score than non- fatigued (i.e. 2.9 ± 0.8 L vs 3.6 ± 0.8 L; 2.4 ± 0.7 l vs 3.0 ± 0.7 L for forced vital capacity and forced expiratory volume in one second, respectively) and forced vital capacity was identified as a predictor of being fatigued. Maximal voluntary activation was lower in fatigued patients than non-fatigued patients (82 ± 14% vs 91 ± 3%) and was the only neuromuscular variable that discriminated between fatigued and non-fatigued patients. Patient-reported outcomes also showed differences between fatigued and non-fatigued patients for sleep, physical activity, depression and quality of life (p < 0.05). CONCLUSIONS: COVID-19 survivors showed altered respiratory function 4 to 8 weeks after discharge, that was further deteriorated in fatigued patients. Fatigue was also associated with lower voluntary activation and patient-reported impairments (i.e. sleep satisfaction, quality of life or depressive state). The present study reinforces the importance of exercise intervention and rehabilitation to counteract cardiorespiratory and neuromuscular impairments of COVID-19 patients admitted in ICU, especially individuals experiencing fatigue.

2.
Eur J Appl Physiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787411

RESUMO

PURPOSE: The perception of effort exerts influence in determining task failure during endurance performance. Training interventions blending physical and cognitive tasks yielded promising results in enhancing performance. Motor imagery can decrease the perception of effort. Whether combining motor imagery and physical training improves endurance remains to be understood, and this was the aim of this study. METHODS: Participants (24 ± 3 year) were assigned to a motor imagery (n = 16) or a control (n = 17) group. Both groups engaged in physical exercises targeting the knee extensors (i.e., wall squat, 12 training sessions, 14-days), with participants from the motor imagery group also performing motor imagery. Each participant visited the laboratory Pre and Post-training, during which we assessed endurance performance through a sustained submaximal isometric knee extension contraction until task failure, at either 20% or 40% of the maximal voluntary contraction peak torque. Perceptions of effort and muscle pain were measured during the exercise. RESULTS: We reported no changes in endurance performance for the control group. Endurance performance in the motor imagery group exhibited significant improvements when the intensity of the sustained isometric exercise closely matched that used in training. These enhancements were less pronounced when considering the higher exercise intensity. No reduction in perception of effort was observed in both groups. There was a noticeable decrease in muscle pain perception within the motor imagery group Post training. CONCLUSION: Combining motor imagery and physical training may offer a promising avenue for enhancing endurance performance and managing pain in various contexts.

3.
Sci Rep ; 14(1): 8475, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605084

RESUMO

Prolonged local vibration (LV) can induce neurophysiological adaptations thought to be related to long-term potentiation or depression. Yet, how changes in intracortical excitability may be involved remains to be further investigated as previous studies reported equivocal results. We therefore investigated the effects of 30 min of LV applied to the right flexor carpi radialis muscle (FCR) on both short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). SICI and ICF were measured through transcranial magnetic stimulation before and immediately after 30 min of FCR LV (vibration condition) or 30 min of rest (control condition). Measurements were performed during a low-intensity contraction (n = 17) or at rest (n = 7). No significant SICI nor ICF modulations were observed, whether measured during isometric contractions or at rest (p = 0.2). Yet, we observed an increase in inter-individual variability for post measurements after LV. In conclusion, while intracortical excitability was not significantly modulated after LV, increased inter-variability observed after LV may suggest the possibility of divergent responses to prolonged LV exposure.


Assuntos
Córtex Motor , Vibração , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos , Inibição Neural/fisiologia
4.
Med Sci Sports Exerc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38619970

RESUMO

INTRODUCTION: Central nervous system excitability depends on the task performed, muscle group solicited, and contraction type. However, little is known on corticospinal and motoneuronal excitability measured during locomotor exercise. This study aimed at determining the reliability of motor-evoked potentials (MEP) and thoracic motor-evoked potentials (TMEP) in dynamic mode during unfatiguing and fatiguing cycling exercise. METHODS: Twenty-two participants completed four visits. Visit 1 comprised familiarization and a maximal incremental test to determine maximal power output (Wmax). The remaining visits encompassed unfatiguing evaluations, which included 8 brief bouts of moderate (50% Wmax) and high intensity cycling (80% Wmax). In each bout, a set of two TMEPs, five MEPs and one M-max were obtained. Subsequently, a fatiguing exercise to exhaustion at 80% Wmax was performed, with four sets of measurements 3 min through the exercise and 4 additional sets at exhaustion, both measured at 50% Wmax. RESULTS: Intraclass correlation coefficients (ICCs) for 5, 10, 15 and 20 MEP·Mmax-1 revealed excellent reliability at both intensities and during fatiguing exercise (ICC ≥ 0.92). TMEP·Mmax-1 showed ICCs ≥0.82 for moderate and high intensity, and it was not affected by fatigability. Overall standard error of measurement was 0.090 [0.083, 0.097] for MEP·Mmax-1 and 0.114 [0.105, 0.125] for TMEP·Mmax-1. A systematic bias associated to the number of stimulations, especially at high intensity, suggested the evaluation itself may be influenced by fatigability. A mean reduction of 8% was detected in TMEP·Mmax-1 at exhaustion. CONCLUSIONS: Motoneuronal and corticospinal excitability measured in dynamic mode presented good to excellent reliability in unfatiguing and fatiguing exercise. Further studies inducing greater fatigability must be conducted to assess the sensitivity of central nervous system excitability during cycling.

5.
Eur J Appl Physiol ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252303

RESUMO

INTRODUCTION/PURPOSE: Recently, the use of transcutaneous spinal cord stimulation (TSCS) has been proposed as a viable alternative to the H-reflex. The aim of the current study was to investigate to what extent the two modes of spinal cord excitability investigation would be similarly sensitive to the well-known vibration-induced depression. METHODS: Fourteen healthy participants (8 men and 6 women; age: 26.7 ± 4.8 years) were engaged in the study. The right soleus H-reflex and TSCS responses were recorded at baseline (PRE), during right Achilles tendon vibration (VIB) and following 20 min of vibration exposure (POST-VIB). Care was taken to match H-reflex and TSCS responses amplitude at PRE and to maintain effective stimulus intensities constant throughout time points. RESULTS: The statistical analysis showed a significant effect of time for the H-reflex, with VIB (13 ± 5% of maximal M-wave (Mmax) and POST-VIB (36 ± 4% of Mmax) values being lower than PRE-values (48 ± 6% of Mmax). Similarly, TSCS responses changed over time, VIB (9 ± 5% of Mmax) and POST-VIB (27 ± 5% of Mmax) values being lower than PRE-values (46 ± 6% of Mmax). Pearson correlation analyses revealed positive correlation between H-reflex and TSCS responses PRE-to-VIB changes, but not for PRE- to POST-VIB changes. CONCLUSION: While the sensitivity of TSCS seems to be similar to the gold standard H-reflex to highlight the vibratory paradox, both responses showed different sensitivity to the effects of prolonged vibration, suggesting slightly different pathways may actually contribute to evoked responses of both stimulation modalities.

6.
Front Physiol ; 14: 1201253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601641

RESUMO

Motor control, including locomotion, strongly depends on the gravitational field. Recent developments such as lower-body positive pressure treadmills (LBPPT) have enabled studies on Earth about the effects of reduced body weight (BW) on walking and running, up to 60% BW. The present experiment was set up to further investigate adaptations to a more naturalistic simulated hypogravity, mimicking a Martian environment with additional visual information during running sessions on LBPPT. Twenty-nine participants performed three sessions of four successive five-min runs at preferred speed, alternating Earth- or simulated Mars-like gravity (100% vs. 38% BW). They were displayed visual scenes using a virtual reality headset to assess the effects of coherent visual flow while running. Running performance was characterized by normal ground reaction force and pelvic accelerations. The perceived upright and vection (visually-induced self-motion sensation)in dynamic visual environments were also investigated at the end of the different sessions. We found that BW reduction induced biomechanical adaptations independently of the visual context. Active peak force and stance time decreased, while flight time increased. Strong inter-individual differences in braking and push-off times appeared at 38% BW, which were not systematically observed in our previous studies at 80% and 60% BW. Additionally, the importance given to dynamic visual cues in the perceived upright diminished at 38% BW, suggesting an increased reliance on the egocentric body axis as a reference for verticality when the visual context is fully coherent with the previous locomotor activity. Also, while vection was found to decrease in case of a coherent visuomotor coupling at 100% BW (i.e., post-exposure influence), it remained unaffected by the visual context at 38% BW. Overall, our findings suggested that locomotor and perceptual adaptations were not similarly impacted, depending on the -simulated- gravity condition and visual context.

7.
Med Sci Sports Exerc ; 55(9): 1641-1650, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580874

RESUMO

PURPOSE: This study aimed to compare performance and fatigability between young (n = 13; 18-30 yr), old (n = 13; 60-80 yr), and very old (n = 12; >80 yr) men during a single-joint isometric (ISO) and concentric (CON) task performed on an isokinetic dynamometer and a cycling (BIKE) task. METHODS: Participants randomly performed incremental tasks consisting of stages of 75 contractions (i.e., 120 s, 0.8 s on/0.8 s off) for ISO and CON and 120 s at 37.5 rpm (similar duty cycle) for BIKE. Increments were set as a percentage of body weight. Knee extensor maximal force, voluntary activation, and twitch amplitude were measured at baseline, after each stage, and at task failure (five out of eight contractions below the target force or 6 s in a row at a cadence <37.5 rpm). RESULTS: Compared with young men, performance (number of stages) was 24% and 40% lower in old and very old men in ISO, 54% and 59% lower in CON, and 36% and 60% lower in BIKE (all P < 0.05). Performance of old and very old differed only in BIKE (P < 0.01). For the last common stages performed, compared with young, force loss was greater for very old men in ISO and for old and very old men in BIKE (all P < 0.05). Overall, for the last common stage performed and task failure, old and very old men presented similar force loss, alterations in voluntary activation, and twitch amplitude. CONCLUSIONS: Our findings reveal that, with workloads relative to body weight, differences in performance between old and very old men could only be observed during BIKE (i.e., the more ecologically valid task). Results from isometric or concentric conditions might not be transferable to dynamic exercise with large muscle masses.

8.
Front Physiol ; 14: 1212198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334048

RESUMO

Introduction: Originally developed for astronauts, lower body positive pressure treadmills (LBPPTs) are increasingly being used in sports and clinical settings because they allow for unweighted running. However, the neuromuscular adjustments to unweighted running remain understudied. They would be limited for certain lower limb muscles and interindividually variable. This study investigated whether this might be related to familiarization and/or trait anxiety. Methods: Forty healthy male runners were divided into two equal groups with contrasting levels of trait anxiety (high, ANX+, n = 20 vs. low, ANX-, n = 20). They completed two 9-min runs on a LBPPT. Each included three consecutive 3-min conditions performed at 100%, 60% (unweighted running), and 100% body weight. Normal ground reaction force and electromyographic activity of 11 ipsilateral lower limb muscles were analyzed for the last 30 s of each condition in both runs. Results: Unweighted running showed muscle- and stretch-shortening cycle phase-dependent neuromuscular adjustments that were repeatable across both runs. Importantly, hamstring (BF, biceps femoris; STSM, semitendinosus/semimembranosus) muscle activity increased during the braking (BF: +44 ± 18%, p < 0.001) and push-off (BF: +49 ± 12% and STSM: +123 ± 14%, p < 0.001 for both) phases, and even more so for ANX+ than for ANX-. During the braking phase, only ANX+ showed significant increases in BF (+41 ± 15%, p < 0.001) and STSM (+53 ± 27%, p < 0.001) activities. During the push-off phase, ANX+ showed a more than twofold increase in STSM activity compared to ANX- (+119 ± 10% vs. +48 ± 27, p < 0.001 for both). Conclusion: The increase in hamstring activity during the braking and push-off phases may have accelerated the subsequent swing of the free-leg, likely counteracting the unweighting-induced slowing of stride frequency. This was even more pronounced in ANX+ than in ANX-, in an increased attempt not to deviate from their preferred running pattern. These results highlight the importance of individualizing LBPPT training and rehabilitation protocols, with particular attention to individuals with weak or injured hamstrings.

9.
Front Sports Act Living ; 5: 1140833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065809

RESUMO

Fatigue is a major symptom in many diseases, often among the most common and severe ones and may last for an extremely long period. Chronic fatigue impacts quality of life, reduces the capacity to perform activities of daily living, and has socioeconomical consequences such as impairing return to work. Despite the high prevalence and deleterious consequences of fatigue, little is known about its etiology. Numerous causes have been proposed to explain chronic fatigue. They encompass psychosocial and behavioral aspects (e.g., sleep disorders) and biological (e.g., inflammation), hematological (e.g., anemia) as well as physiological origins. Among the potential causes of chronic fatigue is the role of altered acute fatigue resistance, i.e. an increased fatigability for a given exercise, that is related to physical deconditioning. For instance, we and others have recently evidenced that relationships between chronic fatigue and increased objective fatigability, defined as an abnormal deterioration of functional capacity (maximal force or power), provided objective fatigability is appropriately measured. Indeed, in most studies in the field of chronic diseases, objective fatigability is measured during single-joint, isometric exercises. While those studies are valuable from a fundamental science point of view, they do not allow to test the patients in ecological situations when the purpose is to search for a link with chronic fatigue. As a complementary measure to the evaluation of neuromuscular function (i.e., fatigability), studying the dysfunction of the autonomic nervous system (ANS) is also of great interest in the context of fatigue. The challenge of evaluating objective fatigability and ANS dysfunction appropriately (i.e.,. how?) will be discussed in the first part of the present article. New tools recently developed to measure objective fatigability and muscle function will be presented. In the second part of the paper, we will discuss the interest of measuring objective fatigability and ANS (i.e. why?). Despite the beneficial effects of physical activity in attenuating chronic fatigue have been demonstrated, a better evaluation of fatigue etiology will allow to personalize the training intervention. We believe this is key in order to account for the complex, multifactorial nature of chronic fatigue.

10.
Scand J Med Sci Sports ; 33(8): 1307-1321, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37067173

RESUMO

PURPOSE: The effectiveness of a neuromuscular electrical stimulation (NMES) program is proportional to the level of evoked torque, which can be achieved with either conventional or wide-pulse stimulations. The aim of this study was to compare evoked torque, objective fatigability, and related peripheral and central alterations, as well as changes in central nervous system (CNS) excitability induced by an acute session of conventional versus wide-pulse NMES. METHODS: Seventeen young men underwent three 20-min NMES sessions: conventional (0.2 ms/50 Hz), wide-pulse at 50 Hz (1 ms/50 Hz), and wide-pulse at 100 Hz (1 ms/100 Hz). Neuromuscular measurements (i.e., maximal voluntary contraction, voluntary activation, evoked responses to femoral nerve stimulation, and CNS excitability) were performed on the right quadriceps femoris muscle before and after each NMES session. CNS excitability was measured using transcranial magnetic, thoracic, and transcutaneous spinal cord stimulations. RESULTS: The level of evoked torque was not significantly different between conventional and wide-pulse protocols applied at the maximal tolerable current intensity. All NMES protocols induced objective fatigability (~14% decrease in maximal voluntary contraction torque, p < 0.001) associated with peripheral (decrease in doublet torque and potentiated M-wave amplitude, p = 0.002 and p < 0.001, respectively) but not central (unchanged voluntary activation, p = 0.79) alterations. However, these acute changes did not differ between NMES protocols and none of the NMES protocols modified markers of CNS excitability. CONCLUSION: These results may allow to conjecture that chronic effects and treatment effectiveness could be comparable between conventional and wide-pulse NMES.


Assuntos
Contração Muscular , Músculo Quadríceps , Masculino , Humanos , Músculo Quadríceps/fisiologia , Estimulação Elétrica/métodos , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Sistema Nervoso Central , Músculo Esquelético/fisiologia , Eletromiografia
11.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850945

RESUMO

This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5-100, vs. 20-200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results.


Assuntos
Perna (Membro) , Nervo Tibial , Adulto , Animais , Humanos , Vias Aferentes , Lista de Checagem , Estimulação Elétrica , Peixes
12.
Eur J Appl Physiol ; 123(6): 1209-1214, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36753001

RESUMO

PURPOSE: The effectiveness of a neuromuscular electrical stimulation (NMES) program has been shown to be proportional to the maximal evocable torque (MET), which is potentially influenced by pulse characteristics such as duration and frequency. The aim of this study was to compare MET between conventional and wide-pulse NMES at two different frequencies. METHODS: MET-expressed as a percentage of maximal voluntary contraction (MVC) torque-and maximal tolerable current intensity were quantified on 71 healthy subjects. The right quadriceps was stimulated with three NMES protocols using different pulse duration/frequency combinations: conventional NMES (0.2 ms/50 Hz; CONV), wide-pulse NMES at 50 Hz (1 ms/50 Hz; WP50) and wide-pulse NMES at 100 Hz (1 ms/100 Hz; WP100). The proportion of subjects reaching the maximal stimulator output (100 mA) before attaining maximal tolerable current intensity was also quantified. RESULTS: The proportion of subjects attaining maximal stimulator output was higher for CONV than WP50 and WP100 (p < 0.001). In subjects who did not attain maximal stimulator output in any protocol, MET was higher for both WP50 and WP100 than for CONV (p < 0.001). Maximal tolerable current intensity was lower for both WP50 and WP100 than for CONV and was also lower for WP100 than for WP50 (p < 0.001). CONCLUSION: When compared to conventional NMES, wide-pulse protocols resulted in greater MET and lower maximal tolerable current intensity. Overall, this may lead to better NMES training/rehabilitation effectiveness and less practical issues associated with maximal stimulator output limitations.


Assuntos
Terapia por Estimulação Elétrica , Músculo Quadríceps , Humanos , Torque , Músculo Quadríceps/fisiologia , Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/métodos , Voluntários Saudáveis , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia
13.
Front Physiol ; 14: 1106387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711014

RESUMO

Introduction: Acute effects of prolonged local vibration (LV) at the central nervous system level have been well investigated demonstrating an altered motoneuronal excitability with a concomitant increase in cortical excitability. While applying LV during isometric voluntary contraction is thought to optimize the effects of LV, this has never been addressed considering the acute changes in central nervous system excitability. Materials and Methods: In the present study, nineteen healthy participants were engaged in four randomized sessions. LV was applied for 30 min to the relaxed flexor carpi radialis muscle (VIBRELAXED) or during wrist flexions (i.e. intermittent contractions at 10% of the maximal voluntary contraction: 15 s ON and 15 s OFF; VIBCONTRACT). A control condition and a condition where participants only performed repeated low-contractions at 10% maximal force (CONTRACT) were also performed. For each condition, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and cervicomedullary evoked potentials (CMEPs) elicited by corticospinal tract electrical stimulation were measured before (PRE) and immediately after prolonged LV (POST) to investigate motoneuronal and corticospinal excitability, respectively. We further calculated the MEP/CMEP ratio as a proxy of cortical excitability. Results: No changes were observed in the control nor CONTRACT condition. At POST, CMEP decreased similarly in VIBRELAXED (-32% ± 42%, p < .001) and VIBCONTRACT (-41% ± 32%, p < .001). MEP/CMEP increased by 110% ± 140% (p = .01) for VIBRELAXED and by 120% ± 208% (p = .02) for VIBCONTRACT without differences between those conditions. Discussion: Our results suggest that LV to the flexor carpi radialis muscle, either relaxed or contracted, acutely decreases motoneuronal excitability and induces some priming of cortical excitability.

14.
Eur J Appl Physiol ; 123(3): 467-477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36318307

RESUMO

PURPOSE: The aim of this study was to investigate the effects of an acute high-intensity, long-duration passive stretching session of the plantar flexor muscles, on maximal dorsiflexion (DF) angle and passive stiffness at both ankle joint and gastrocnemius medialis (GM) muscle levels in children with unilateral cerebral palsy (CP). METHODS: 13 children [mean age: 10 years 6 months, gross motor function classification system (GMFCS): I] with unilateral CP underwent a 5 min passive stretching session at 80% of maximal DF angle. Changes in maximal DF angle, slack angle, passive ankle joint and GM muscle stiffness from PRE- to POST-intervention were determined during passive ankle mobilization performed on a dynamometer coupled with shear wave elastography measurements (i.e., ultrasound) of the GM muscle. RESULTS: Maximal DF angle and maximal passive torque were increased by 6.3° (P < 0.001; + 50.4%; 95% CI 59.9, 49.9) and 4.2 Nm (P < 0.01; + 38.9%; 95% CI 47.7, 30.1), respectively. Passive ankle joint stiffness remained unchanged (P = 0.9; 0%; 95% CI 10.6, - 10.6). GM muscle shear modulus was unchanged at maximal DF angle (P = 0.1; + 34.5%; 95% CI 44.7, 24.7) and at maximal common torque (P = 0.5; - 4%; 95% CI - 3.7, - 4.3), while it was decreased at maximal common angle (P = 0.021; - 35%; 95% CI - 11.4, - 58.5). GM slack angle was shifted in a more dorsiflexed position (P = 0.02; + 20.3%; 95% CI 22.6, 18). CONCLUSION: Increased maximal DF angle can be obtained in the paretic leg in children with unilateral CP after an acute bout of stretching using controlled parameters without changes in passive stiffness at joint and GM muscle levels. CLINICAL TRIAL NUMBER: NCT03714269.


Assuntos
Paralisia Cerebral , Técnicas de Imagem por Elasticidade , Exercícios de Alongamento Muscular , Criança , Humanos , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Torque
15.
Front Physiol ; 13: 1039616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439261

RESUMO

Purpose: Monitoring fatigue is now commonly performed in athletes as it can directly impact performance and may further increase the risk of injury or overtraining syndrome. Among the exercise-induced peripheral alterations, low-frequency fatigue (LFF) assessment is commonly restricted to in-lab studies. Measuring LFF on-field would allow athletes and coaches to assess muscle fatigability on a regular basis. The aim of the present study was therefore to validate a new portable device allowing quadriceps LFF assessment in the field. Methods: LFF was assessed in 15 active and healthy participants before (PRE) and after (POST) a series of drop jumps. LFF was assessed, thanks to a dedicated device recording evoked force to muscle submaximal electrical low- and high-frequency stimulation. Changes in the low- to high-frequency force ratio (further referred to as Powerdex® value) were compared to the changes in the ratio of evoked force induced by paired-pulse femoral nerve electrical stimulation at 10 and 100 Hz (i.e., DB10/DB100 ratio). Maximal voluntary contraction (MVC) and voluntary activation (VA) were also measured. Results: MVC decreased (p < 0.001), whereas VA was not affected by the fatiguing task (p = 0.14). There was a decrease in the DB10/DB100 ratio (from 96.4% to 67.3%, p < 0.001) as well as in the Powerdex value (from 74.0% to 55.7%, p < 0.001). There was no significant difference between POST values (expressed in percentage of PRE values) of the DB10/DB100 ratio and Powerdex (p = 0.44), and there was a significant correlation between the changes in Powerdex® and DB10/DB100 (r = 0.82, p < 0.001). Conclusion: The on-field device we tested is a valid tool to assess LFF after a strenuous exercise consisting of repeated drop jumps as it evidences the presence of LFF similarly to a lab technique. Such a device can be used to monitor muscle fatigability related to excitation-contraction in athletes.

16.
J Electromyogr Kinesiol ; 67: 102715, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274441

RESUMO

In the present study, we aimed to provide a robust comparison of the fatigability of the knee extensors following isometric (ISO) and concentric (CON) tasks. Twenty young adults (25 ± 4 yr, 10 women) randomly performed the ISO and CON quadriceps intermittent fatigue test, consisting of ten (5 s on/5-s off, ISO) or one-hundred (0.5-s on/0.5-s off, CON) contractions with 10 % increments per stage until exhaustion. Performance fatigability was quantified as maximal isometric (MVIC) and concentric (MVCC) torque loss. Voluntary activation and contractile function (peak-twitch) were investigated using peripheral nerve stimulation. Number of stages (6.2 ± 0.7 vs. 4.9 ± 0.8; P < 0.001) and torque-time integral (20,166 ± 7,821 vs. 11,285 ± 4,933 Nm.s; P < 0.001) were greater for ISO than CON. MVIC, MVCC and voluntary activation decreased similarly between sessions (P > 0.05) whereas peak-twitch amplitude decreased more for CON (P < 0.001). The number of contractions was similar across sexes (ISO: men = 62 ± 8, women = 61 ± 5; CON: men = 521 ± 67, women = 458 ± 76, P > 0.05). MVCC was more reduced in women for both sessions (all P < 0.05), while MVIC loss was similar between sexes. We concluded that, despite greater torque-time integral and duration for ISO, both sessions induced a similar performance fatigability at exhaustion. Contractile function was more altered in CON. Finally, sex-related difference in fatigability depends on the contraction mode used during testing.


Assuntos
Contração Isométrica , Fadiga Muscular , Masculino , Adulto Jovem , Feminino , Humanos , Fadiga Muscular/fisiologia , Contração Isométrica/fisiologia , Eletromiografia , Músculo Esquelético/fisiologia , Estimulação Elétrica , Torque
17.
Crit Care Med ; 50(11): 1555-1565, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053085

RESUMO

OBJECTIVES: The aim of the current study was to investigate the level of cardiorespiratory fitness and neuromuscular function of ICU survivors after COVID-19 and to examine whether these outcomes are related to ICU stay/mechanical ventilation duration. DESIGN: Prospective nonrandomized study. SETTING: Patients hospitalized in ICU for COVID-19 infection. PATIENTS: Sixty patients hospitalized in ICU (mean duration: 31.9 ± 18.2 d) were recruited 4-8 weeks post discharge from ICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients visited the laboratory on two separate occasions. The first visit was dedicated to quality of life questionnaire, cardiopulmonary exercise testing, whereas measurements of the knee extensors neuromuscular function were performed in the second visit. Maximal oxygen uptake (V o2 max) was 18.3 ± 4.5 mL·min -1 ·kg -1 , representing 49% ± 12% of predicted value, and was significantly correlated with ICU stay/mechanical ventilation (MV) duration ( R = -0.337 to -0.446; p < 0.01 to 0.001), as were maximal voluntary contraction and electrically evoked peak twitch. V o2 max (either predicted or in mL· min -1 ·kg -1 ) was also significantly correlated with key indices of pulmonary function such as predicted forced vital capacity or predicted forced expiratory volume in 1 second ( R = 0.430-0.465; p ≤ 0.001) and neuromuscular function. Both cardiorespiratory fitness and neuromuscular function were correlated with self-reported physical functioning and general health status. CONCLUSIONS: V o2 max was on average only slightly above the 18 mL·min -1 ·kg -1 , that is, the cut-off value known to induce difficulty in performing daily tasks. Overall, although low physical capacities at admission in ICU COVID-19 patients cannot be ruled out to explain the association between V o2 max or neuromuscular function and ICU stay/MV duration, altered cardiorespiratory fitness and neuromuscular function observed in the present study may not be specific to COVID-19 disease but seem applicable to all ICU/MV patients of similar duration.


Assuntos
COVID-19 , Aptidão Cardiorrespiratória , Assistência ao Convalescente , COVID-19/terapia , Humanos , Unidades de Terapia Intensiva , Oxigênio , Alta do Paciente , Estudos Prospectivos , Qualidade de Vida , Respiração Artificial
18.
Eur J Appl Physiol ; 122(11): 2451-2461, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36001143

RESUMO

PURPOSE: The present study aimed to directly compare the effects of 30 min muscle (VIBmuscle) vs. tendon (VIBtendon) local vibration (LV) to the quadriceps on maximal voluntary isometric contraction (MVIC) and rate of torque development (RTD) as well as on central nervous system excitability (i.e. motoneuron and cortical excitability). METHODS: Before (PRE) and immediately after (POST) LV applied to the quadriceps muscle or its tendon, we investigated MVIC and RTD (STUDY #1; n = 20) or vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) electromyography responses to thoracic electrical stimulation (TMEPs; motoneuron excitability) and transcranial magnetic stimulation (MEPs; corticospinal excitability) (STUDY #2; n = 17). MEP/TMEP ratios were further calculated to quantify changes in cortical excitability. RESULTS: MVIC decreased at POST (P = 0.017) without any difference between VIBtendon and VIBmuscle, while RTD decreased for VIBtendon (P = 0.013) but not VIBmuscle. TMEP amplitudes were significantly decreased for all muscles (P = 0.014, P < 0.001 and P = 0.004 for VL, VM and RF, respectively) for both LV sites. While no changes were observed for MEP amplitude, MEP/TMEP ratios increased at POST for VM and RF muscles (P = 0.009 and P = 0.013, respectively) for both VIBtendon and VIBmuscle. CONCLUSION: The present results suggest that prolonged muscle and tendon LV are similarly effective in modulating central nervous system excitability and decreasing maximal force. Yet, altered explosive performance after tendon but not muscle LV suggests greater neural alterations when tendons are vibrated.


Assuntos
Músculo Quadríceps , Vibração , Sistema Nervoso Central , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Tendões
19.
J Vasc Surg Venous Lymphat Disord ; 10(5): 1147-1154.e1, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714904

RESUMO

OBJECTIVE: The aim of this study was to quantify fatigue and quality of life (QoL) in people self-reporting chronic venous disease (CVD) symptoms or at risk of CVD within a large cohort representative of the French population. The relationship between self-reported physical activity and both fatigue and QoL was also investigated. We hypothesized that a greater fatigue and impaired QoL would exist in participants self-reporting CVD symptoms, with the impairments being attenuated in those with greater level of physical activity. METHODS: Using a web-based, custom and adaptive survey, 3008 participants were asked to self-report the presence of common symptoms and risk factors of CVD. Fatigue, QoL, and physical activity were assessed using the Functional Assessment of Chronic Illness Therapy-Fatigue scale, the Chronic Venous Insufficiency Quality of Life Questionnaire, and the Godin-Shepard Leisure-Time Physical Activity Questionnaire, respectively. RESULTS: Thirty-two percent of participants were categorized as having CVD symptoms, whereas 50% were categorized as at risk of CVD. Fatigue was greater in participants with CVD symptoms than non-CVD participants (P < .001), with the score of participants at risk of CVD being intermediate (P ≤ .001). QoL was more impaired in participants with CVD symptoms compared with participants at risk of CVD (P < .001). In participants with CVD symptoms, there were relationships between fatigue and QoL (P < .001) and between physical activity and fatigue (P < .001). Despite the relationship between physical activity and QoL not reaching significance (P = .067), a lower QoL was found in insufficiently active as compared with active (P < .001) and moderately active (P < .001) participants with CVD symptoms. CONCLUSIONS: Participants self-reporting CVD symptoms suffer from greater fatigue and impaired QoL. In this population, a higher level of physical activity is associated with less fatigue and a tendency toward improved QoL.


Assuntos
Qualidade de Vida , Doenças Vasculares , Doença Crônica , Exercício Físico , Fadiga/diagnóstico , Fadiga/etiologia , Humanos , Autorrelato , Doenças Vasculares/diagnóstico
20.
Sci Rep ; 12(1): 5631, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379874

RESUMO

Prolonged stays in intensive care units (ICU) are responsible for long-lasting consequences, fatigue being one of the more debilitating. Yet, fatigue prevalence for patients that have experienced ICU stays remains poorly investigated. This study aimed to evaluate fatigue prevalence and the level of physical activity in ICU survivors from 6 months to 5 years after ICU discharge using the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) and Godin questionnaires, respectively. Data from 351 ICU survivors (out of 1583 contacted) showed that 199 (57%) and 152 (43%) were considered as fatigued and non-fatigued, respectively. The median FACIT-F scores for fatigued versus non-fatigued ICU survivors were 21 (14-27) and 45 (41-48), respectively (p < 0.001). Time from discharge had no significant effect on fatigue prevalence (p = 0.30) and fatigued ICU survivors are less active (p < 0.001). In multivariate analysis, the only risk factor of being fatigued that was identified was being female. We reported a high prevalence of fatigue among ICU survivors. Sex was the only independent risk factor of being fatigued, with females being more prone to this symptom. Further studies should consider experimental approaches that help us understand the objective causes of fatigue, and to build targeted fatigue management interventions.


Assuntos
Fadiga , Alta do Paciente , Feminino , Humanos , Unidades de Terapia Intensiva , Prevalência , Autorrelato , Sobreviventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...