Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 168(2): 315-338, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535037

RESUMO

The GMO90+ project was designed to identify biomarkers of exposure or health effects in Wistar Han RCC rats exposed in their diet to 2 genetically modified plants (GMP) and assess additional information with the use of metabolomic and transcriptomic techniques. Rats were fed for 6-months with 8 maize-based diets at 33% that comprised either MON810 (11% and 33%) or NK603 grains (11% and 33% with or without glyphosate treatment) or their corresponding near-isogenic controls. Extensive chemical and targeted analyses undertaken to assess each diet demonstrated that they could be used for the feeding trial. Rats were necropsied after 3 and 6 months. Based on the Organization for Economic Cooperation and Development test guideline 408, the parameters tested showed a limited number of significant differences in pairwise comparisons, very few concerning GMP versus non-GMP. In such cases, no biological relevance could be established owing to the absence of difference in biologically linked variables, dose-response effects, or clinical disorders. No alteration of the reproduction function and kidney physiology was found. Metabolomics analyses on fluids (blood, urine) were performed after 3, 4.5, and 6 months. Transcriptomics analyses on organs (liver, kidney) were performed after 3 and 6 months. Again, among the significant differences in pairwise comparisons, no GMP effect was observed in contrast to that of maize variety and culture site. Indeed, based on transcriptomic and metabolomic data, we could differentiate MON- to NK-based diets. In conclusion, using this experimental design, no biomarkers of adverse health effect could be attributed to the consumption of GMP diets in comparison with the consumption of their near-isogenic non-GMP controls.


Assuntos
Ração Animal/toxicidade , Grão Comestível/química , Alimentos Geneticamente Modificados/toxicidade , Plantas Geneticamente Modificadas/química , Zea mays/genética , Ração Animal/normas , Animais , Qualidade de Produtos para o Consumidor , Grão Comestível/genética , Feminino , Alimentos Geneticamente Modificados/normas , Masculino , Plantas Geneticamente Modificadas/genética , Ratos , Ratos Wistar , Testes de Toxicidade/métodos , Zea mays/química
2.
Food Chem Toxicol ; 113: 66-72, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29421768

RESUMO

Today, developmental intellectual disorders affect one out of six children in industrialised countries. Intensively used in agriculture, the neurotoxicant pesticide chlorpyrifos (CPF) is known for its environmental persistence and bioaccumulation. Its role has not yet been established in the aetiology of intellectual impairments. Here we assessed whether maternal ingestion of low CPF dose in rats could impair the cerebral function of their progeny. Rat dams received daily CPF exposures (1 mg/kg, per os) during gestation and lactation. Behaviours relevant to mental retardation were measured in the surface righting, negative geotaxis and grip strength at post-natal days (PND) 3 and 7. Open field tests were performed at PND 16, 18 and 20. Fear conditioning was assessed at PND 34. Startle inhibition was tested at PND 31 and 60. According to the results, the progeny of CPF-treated dams showed slower negative geotaxis as neonates, lower novelty exploration as juveniles and faster startle reflex as adolescents and adults. This data suggests that developmental CPF relevant to human exposure may impair novelty-related activity and sensori-motor functions, thus adaptability to the environment. This data supports the hypothesis that CPF may contribute to behavioural disorders including acquisition retardation and consequences as an adult.


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medo , Feminino , Deficiência Intelectual/induzido quimicamente , Masculino , Gravidez , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos
3.
Metabolomics ; 14(3): 36, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-30830357

RESUMO

INTRODUCTION: In addition to classical targeted biochemical analyses, metabolomic analyses seem pertinent to reveal expected as well as unexpected compositional differences between plant genetically modified organisms (GMO) and non-GMO samples. Data previously published in the existing literature led to divergent conclusions on the effect of maize transgenes on grain compositional changes and feeding effects. Therefore, a new study examining field-grown harvested products and feeds derived from them remains useful. OBJECTIVES: Our aim was to use a metabolomics approach to characterize grain and grain-based diet compositional changes for two GMO events, one involving Bacillus thuringiensis toxin to provide insect resistance and the other one conferring herbicide tolerance by detoxification of glyphosate. We also investigated the potential compositional modifications induced by the use of a glyphosate-based herbicide on the transgenic line conferring glyphosate tolerance. RESULTS: The majority of statistically significant differences in grain composition, evidenced by the use of 1H-NMR profiling of polar extracts and LC-ESI-QTOF-MS profiling of semi-polar extracts, could be attributed to the combined effect of genotype and environment. In comparison, transgene and glyphosate effects remained limited in grain for the compound families studied. Some but not all compositional changes observed in grain were also detected in grain-based diets formulated for rats. CONCLUSION: Only part of the data previously published in the existing literature on maize grains of plants with the same GMO events could be reproduced in our experiment. All spectra have been deposited in a repository freely accessible to the public. Our grain and diet characterization opened the way for an in depth study of the effects of these diets on rat health.


Assuntos
Ração Animal/normas , Alimentos Geneticamente Modificados/normas , Glicina/análogos & derivados , Metaboloma , Sementes/metabolismo , Zea mays/metabolismo , Animais , Glicina/farmacologia , Ratos , Sementes/efeitos dos fármacos , Sementes/genética , Zea mays/genética , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...