Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 109(9): 1952-60, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16833529

RESUMO

The complexation of lead(II) with mono-deprotonated caffeic acid in aqueous solution (pH = 6.50) has been investigated by UV-visible, fluorescence, and vibrational spectroscopies combined with quantum chemical calculations (DFT). The caffeate ion presents two chelating sites in competition: the carboxylate and the catechol functions. Electronic spectroscopies highlighted two different complexed forms with, respectively, 1:1 and 2:1 stoichiometry. The 1:1 complex predominates for low lead concentrations, even if the second complexed form appears before the first chelating site is fully occupied. Both spectroscopic data and calculations reveal that Pb(II) preferentially coordinates with the carboxylate function, in opposition with previous results found for the Al(III) complexation, where the catechol group presents the greater complexing power. The structural and vibrational modifications between the mono-deprotonated ligand and 1:1 complex engendered by the chelation are discussed. Water molecules have been added on the Pb ion to modify its coordination, and structures of Pb(H(2)CA)(H(2)O)(n)(+) with n = 0-4 were optimized. Calculations of theoretical frequencies have permitted us to propose a tentative assignment of infrared and Raman spectra of complexed species.

2.
J Phys Chem A ; 109(30): 6752-61, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16834029

RESUMO

The structural changes occurring with the chelation of lead(II) to 3-hydroxyflavone, 5-hydroxyflavone, and 3',4'-dihydroxyflavone have been investigated by the density functional theory (DFT) method with the B3LYP functional and the 6-31G(d,p) basis set. The two effective core potentials Lanl2dz (Los Alamos) and MWB78 (Stuttgart/Dresden) were used for the Pb ion. Only the 3',4'-dihydroxyflavone ligand shows minor geometrical modifications upon chelation, whereas the two other ligands present important changes of their chromone moiety. The time dependent density functional theory (TD-DFT) has been employed to calculate the electronic absorption spectra of the 1:1 complexes of lead(II) with the three hydroxyflavones, as well in a vacuum as in methanol. The solvent effect is modeled using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). Comparison with experimental data allows a precise assessment of the performances of the method, which appears competitive and suitable to reproduce the spectral measurements when the solvent effect is taken into account. These calculations and the molecular orbital analysis have allowed an explanation of the different behaviors of the three ligands toward Pb(II) and particularly the fact that no bathochromic shift is observed with the addition of lead(II) to a 5-hydroxyflavone solution. A complete assignment of the electronic absorption spectra of both free and complexed ligands has been carried out.


Assuntos
Algoritmos , Flavonas/química , Chumbo/química , Compostos Organometálicos/química , Teoria Quântica , Elétrons , Flavonoides/química , Metanol/química , Modelos Moleculares , Estrutura Molecular , Solventes/química , Análise Espectral , Fatores de Tempo
3.
J Phys Chem A ; 109(44): 10044-51, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16838923

RESUMO

The interactions of lead(II) ion with a polyhydroxylated flavonoid, the quercetin molecule, were investigated in methanol solution. The quercetin/metal stoichiometries and equilibrium stability constants for metal binding to quercetin have been determined by UV-vis spectroscopy combined with chemometrics methods. The 2:1, 1:2, and predominant 1:1 species are formed in solution. Among the three potential sites of chelation present in the quercetin structure, the catechol function presents the highest complexation power toward Pb(II), in opposition with previous results found for Al(III) complexation. This result has been confirmed by the good agreement of the experimental and theoretical features for both the electronic and vibrational spectra of the 1:1 complex. DT-DFT calculations show that the bathochromic shift of the long-wavelength band of the UV-vis spectra, that occurs upon complexation, is due to a ligand-to-metal charge transfer. The molecular structure of the ligand is not much modified by the coordination of lead at the level of the catecholate.


Assuntos
Simulação por Computador , Chumbo/química , Compostos Organometálicos/química , Quercetina/química , Ligantes , Metanol/química , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/instrumentação , Espectrofotometria Ultravioleta/métodos , Estereoisomerismo , Vibração
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(11): 2553-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15294244

RESUMO

FTIR and Raman vibrational spectroscopic techniques as well as DFT quantum chemical calculation were used for characterizing conformational changes of phenylurea (a herbicide parent molecule) occurring from solid state to aqueous medium. Experimental infrared frequencies were assigned on the base of urea and benzenic derivatives spectroscopic data available in the literature and vibrational normal modes analytical calculation at the fully optimized geometry. Investigation of isotopic and solvent effects has revealed that the structure of phenylurea is particularly sensitive to the electrostatic environment via hydrogen non covalent bonds. The ability of beta-cyclodextrin (beta-CD) to form host-guest inclusion complex with phenylurea in the solid state was also evidenced by significant frequency shifts observed in the 1400-1800 cm(-1) spectral range.


Assuntos
Compostos de Fenilureia/química , beta-Ciclodextrinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA