Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 3): 813-826, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381786

RESUMO

The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.

2.
Rev Sci Instrum ; 88(1): 013108, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147645

RESUMO

We present the development, manufacturing, and performance of spherically bent crystal analyzers (SBCAs) of 100 mm diameter and 0.5 m bending radius. The elastic strain in the crystal wafer is partially released by a "strip-bent" method where the crystal wafer is cut into strips prior to the bending and the anodic bonding process. Compared to standard 1 m SBCAs, a gain in intensity is obtained without loss of energy resolution. The gain ranges between 2.5 and 4.5, depending on the experimental conditions and the width of the emission line measured. This reduces the acquisition times required to perform high energy-resolution x-ray absorption and emission spectroscopy on ultra-dilute species, accessing concentrations of the element of interest down to, or below, the ppm (ng/mg) level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA