Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38630118

RESUMO

The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).


Assuntos
Actinobacteria , Actinomycetales , Fosfatidiletanolaminas , República Tcheca , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias , Carvão Mineral
2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499372

RESUMO

Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 ß-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.


Assuntos
Streptomyces , Humanos , Streptomyces/química , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Polienos/farmacologia , Polienos/química , Hemólise , Fatores de Virulência/metabolismo
3.
Sci Rep ; 12(1): 9353, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672429

RESUMO

Notwithstanding the fact that streptomycetes are overlooked in clinical laboratories, studies describing their occurrence in disease and potential pathogenicity are emerging. Information on their species diversity in clinical specimens, aetiology and appropriate therapeutic treatment is scarce. We identified and evaluated the antibiotic susceptibility profile of 84 Streptomyces clinical isolates from the Czech Republic. In the absence of appropriate disk diffusion (DD) breakpoints for antibiotic susceptibility testing (AST) of Streptomyces spp., we determined DD breakpoints by correlation with the broth microdilution method and by the distribution of zone diameters among isolates. Correlation accuracy was high for 9 antibiotics, leading to the establishment of the most valid DD breakpoints for Streptomyces antibiotic susceptibility evaluation so far. Clinical strains belonged to 17 different phylotypes dominated by a cluster of strains sharing the same percentage of 16S rRNA gene sequence identity with more than one species (S. albidoflavus group, S. hydrogenans, S. resistomycificus, S. griseochromogenes; 70% of isolates). AST results showed that Streptomyces exhibited intrinsic resistance to penicillin, general susceptibility to amikacin, gentamycin, vancomycin and linezolid, and high percentage of susceptibility to tetracyclines and clarithromycin. For the remaining antibiotics, AST showed inter- and intra-species variations when compared to available literature (erythromycin, trimethoprim-sulfamethoxazole), indicating a region-dependent rather than species-specific patterns.


Assuntos
Streptomyces , Antibacterianos/farmacologia , Linezolida , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Streptomyces/genética
4.
Microorganisms ; 9(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442631

RESUMO

Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of Streptomyces sp. TR1341 to the plant-associated Streptomyces sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (mce) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in Mycobacterium species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...