Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708345

RESUMO

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Assuntos
Cistatina C , Macrófagos , Óxido Nítrico , Porphyromonas gingivalis , Espécies Reativas de Oxigênio , Porphyromonas gingivalis/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cistatina C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Periodontite/microbiologia , Periodontite/imunologia , Periodontite/tratamento farmacológico , Periodontite/patologia , Apoptose/efeitos dos fármacos
2.
Mol Microbiol ; 120(3): 307-323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487601

RESUMO

Bacteria frequently store excess carbon in hydrophobic granules of polyhydroxybutyrate (PHB) that in some growth conditions can occupy most of the cytoplasmic space. Different types of proteins associate to the surface of the granules, mainly enzymes involved in the synthesis and utilization of the reserve polymer and a diverse group of proteins known as phasins. Phasins have different functions, among which are regulating the size and number of the granules, modulating the activity of the granule-associated enzymes and helping in the distribution of the granules inside the cell. Caulobacter crescentus is an oligotrophic bacterium that shows several morphological and regulatory traits that allow it to grow in very nutrient-diluted environments. Under these conditions, storage compounds should be particularly relevant for survival. In this work, we show an initial proteomic characterization of the PHB granules and describe a new type of phasin (PhaH) characterized by the presence of an N-terminal hydrophobic helix followed by a helix-hairpin-helix (HhH) domain. The hydrophobic helix is required for maximal PHB accumulation and maintenance during the stationary phase while the HhH domain is involved in determining the size of the PHB granules and their distribution in the cell.


Assuntos
Caulobacter crescentus , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
3.
Environ Monit Assess ; 195(1): 195, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512105

RESUMO

Biomonitoring is a valuable tool for assessing the presence and effects of air pollutants such as heavy metals (HM); due to their toxicity and stability, these compounds can affect human health and the balance of ecosystems. To assess its potential as a sentinel organism of HM pollution, the wild plant Gnaphalium lavandulifolium was exposed to four sites in the metropolitan area of México Valley (MAMV): Altzomoni (ALT) Coyoacán (COY), Ecatepec (ECA), and Tlalnepantla (TLA) during 2, 4, and 8 weeks, between October and November 2019. Control plants remained under controlled conditions. The chemical analysis determined twelve HM (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) in the leaves. Macroscopic damage to the leaves, later determined in semi-thin sections under light microscopy, lead to a finer analysis. Transmission electron microscope (TEM) showed major structural changes: chromatin condensation, protoplast shrinkage, cytoplasm vacuolization, cell wall thinning, decreased number and size of starch grains, and plastoglobules in chloroplasts. All these characteristics of stress-induced programed cell death (sPCD) were related to the significant increase of toxic HM in the leaves of the exposed plants compared to the control (p < 0.05). Immunohistochemistry revealed a significant amount of proteases with caspase 3-like activity in ECA and TLA samples during long exposure times. Ultrastructural changes and sPCD features detected confirmed the usefulness of G. lavandulifolium as a good biomonitor of HM contamination. They supported the possibility of considering subcellular changes as markers of abiotic stress conditions in plants.


Assuntos
Gnaphalium , Metais Pesados , Humanos , Monitoramento Biológico , Monitoramento Ambiental , Ecossistema , México , Metais Pesados/toxicidade , Metais Pesados/análise
4.
Bioresour Technol ; 337: 125508, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34320776

RESUMO

The photoautotrophic poly(3-hydroxybutyrate) (PHB) production by cyanobacteria is an attractive option as it only requires CO2 and light. In this work, a new wild-type strain producing PHB, Synechococcus elongatus UAM-C/S03, was identified using a polyphasic approach. The strain was cultured in a photobioreactor operated under N-sufficiency conditions at different pH values (7 to 11) and fed with CO2 on demand. We also evaluated the production of PHB under N-starving conditions. Highest biomass productivity, 324 mg L-1 d-1, and CO2 capture, 674 mg L-1 d-1, were obtained at pH 7 and under N-sufficiency conditions. The strain accumulated 29.42% of PHB in dry cell weight (DCW) under N-starvation conditions without pH control, and highest PHB productivity was 58.10 mg L-1 d-1. The highest carbohydrate content registered at pH 8, 50.84% in DCW, along with a release of carbon-based organic compounds, suggested the presence of exopolysaccharides in the culture medium.


Assuntos
Hidroxibutiratos , Synechococcus , Ácido 3-Hidroxibutírico , Ambientes Extremos , Poliésteres
5.
Sci Rep ; 11(1): 2513, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510358

RESUMO

During sporulation Bacillus subtilis Mfd couples transcription to nucleotide excision repair (NER) to eliminate DNA distorting lesions. Here, we report a significant decline in sporulation following Mfd disruption, which was manifested in the absence of external DNA-damage suggesting that spontaneous lesions activate the function of Mfd for an efficient sporogenesis. Accordingly, a dramatic decline in sporulation efficiency took place in a B. subtilis strain lacking Mfd and the repair/prevention guanine oxidized (GO) system (hereafter, the ∆GO system), composed by YtkD, MutM and MutY. Furthermore, the simultaneous absence of Mfd and the GO system, (i) sensitized sporulating cells to H2O2, and (ii) elicited spontaneous and oxygen radical-induced rifampin-resistance (Rifr) mutagenesis. Epifluorescence (EF), confocal and transmission electron (TEM) microscopy analyses, showed a decreased ability of ∆GO ∆mfd strain to sporulate and to develop the typical morphologies of sporulating cells. Remarkably, disruption of sda, sirA and disA partially, restored the sporulation efficiency of the strain deficient for Mfd and the ∆GO system; complete restoration occurred in the RecA- background. Overall, our results unveil a novel Mfd mechanism of transcription-coupled-repair (TCR) elicited by 8-OxoG which converges in the activation of a RecA-dependent checkpoint event that control the onset of sporulation in B. subtilis.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Recombinases Rec A/metabolismo , Transcrição Gênica , Bacillus subtilis/ultraestrutura , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Guanina/metabolismo , Mutação , Espécies Reativas de Oxigênio , Esporos Bacterianos
6.
PLoS One ; 15(8): e0237667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833960

RESUMO

BACKGROUND AND AIMS: This is the first time that obesity and diabetes mellitus (DM) as protein conformational diseases (PCD) are reported in children and they are typically diagnosed too late, when ß-cell damage is evident. Here we wanted to investigate the level of naturally-ocurring or real (not synthetic) oligomeric aggregates of the human islet amyloid polypeptide (hIAPP) that we called RIAO in sera of pediatric patients with obesity and diabetes. We aimed to reduce the gap between basic biomedical research, clinical practice-health decision making and to explore whether RIAO work as a potential biomarker of early ß-cell damage. MATERIALS AND METHODS: We performed a multicentric collaborative, cross-sectional, analytical, ambispective and blinded study; the RIAO from pretreated samples (PTS) of sera of 146 pediatric patients with obesity or DM and 16 healthy children, were isolated, measured by sound indirect ELISA with novel anti-hIAPP cytotoxic oligomers polyclonal antibody (MEX1). We carried out morphological and functional studied and cluster-clinical data driven analysis. RESULTS: We demonstrated by western blot, Transmission Electron Microscopy and cell viability experiments that RIAO circulate in the blood and can be measured by ELISA; are elevated in serum of childhood obesity and diabetes; are neurotoxics and works as biomarkers of early ß-cell failure. We explored the range of evidence-based medicine clusters that included the RIAO level, which allowed us to classify and stratify the obesity patients with high cardiometabolic risk. CONCLUSIONS: RIAO level increases as the number of complications rises; RIAOs > 3.35 µg/ml is a predictor of changes in the current indicators of ß-cell damage. We proposed a novel physio-pathological pathway and shows that PCD affect not only elderly patients but also children. Here we reduced the gap between basic biomedical research, clinical practice and health decision making.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Obesidade/patologia , Estrutura Quaternária de Proteína , Adolescente , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Criança , Pré-Escolar , Estudos Transversais , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Obesidade/sangue , Obesidade/complicações , Projetos Piloto , Cultura Primária de Células , Multimerização Proteica , Ratos , Testes de Toxicidade Aguda
7.
Sci Rep ; 9(1): 18465, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804529

RESUMO

The formation of amyloid oligomers and fibrils of the human islet amyloid polypeptide (hIAPP) has been linked with ß- cell failure and death which causes the onset, progression, and comorbidities of diabetes. We begin to unpack the aggregation-oligomerization-fibrillization process of these oligomers taken from sera of pediatric patients. The naturally occurring or real hIAPP (not synthetic) amyloid oligomers (RIAO) were successfully isolated, we demonstrated the presence of homo (dodecamers, hexamers, and trimers) and hetero-RIAO, as well as several biophysical characterizations which allow us to learn from the real phenomenon taking place. We found that the aggregation/oligomerization process is active in the sera and showed that it happens very fast. The RIAO can form fibers and react with anti-hIAPP and anti-amyloid oligomers antibodies. Our results opens the epistemic horizon and reveal real differences between the four groups (Controls vs obesity, T1DM or T2DM) accelerating the process of understanding and discovering novel and more efficient prevention, diagnostic, transmission and therapeutic pathways.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Obesidade/patologia , Agregação Patológica de Proteínas/patologia , Criança , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/isolamento & purificação , Masculino , Obesidade/sangue , Agregados Proteicos , Agregação Patológica de Proteínas/sangue , Multimerização Proteica
8.
Lab Chip ; 19(20): 3512-3525, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31544189

RESUMO

The study of mechanotransduction signals and cell response to mechanical properties requires designing culture substrates that possess some, or ideally all, of the following characteristics: (1) biological compatibility and adhesive properties, (2) stiffness control or tunability in a dynamic mode, (3) patternability on the microscale and (4) integrability in microfluidic chips. The most common materials used to address cell mechanotransduction are hydrogels, due to their softness. However, they may be impractical when complex scaffolds are sought and they lack viscous dissipative properties that are very important in mechanobiology. In this work, we show that an off-the-shelf, biocompatible photosensitive glue, Loctite 3525, may be used readily in mechanobiology assays without any special treatment prior to fabrication of cell culture platforms. Despite a high (MPa) stiffness easily tunable by UV exposure time at a fixed dose, 3T3 fibroblasts showed a response to the mechanics of the material similar to that obtained on much softer (kPa) hydrogels. Loctite's viscous dissipation properties indeed seemed to be responsible for such cell mechanical response, as suggested by recent works where more complex two-phase hydrogels were employed. More interestingly, it was possible to stiffen soft Loctite substrates by post-exposing them during cell culture, to observe changes in cell spreading caused by a dynamic stiffness modification. Thanks to Loctite 3525's patternability, micropillars were also fabricated to demonstrate the compatibility with traction force microscopy studies. Finally, the glue was used as an excellent adhesion layer for hydrogels on glass or PDMS, without the need for additional treatment, enabling the easy fabrication of microfluidic chips integrating hydrogels.


Assuntos
Técnicas de Cultura de Células/métodos , Metacrilatos/química , Microfluídica/instrumentação , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Módulo de Elasticidade , Adesões Focais/efeitos dos fármacos , Humanos , Hidrogéis/química , Mecanotransdução Celular/fisiologia , Metacrilatos/farmacologia , Camundongos , Raios Ultravioleta
9.
Histochem Cell Biol ; 150(5): 521-527, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30206694

RESUMO

Light and electron microscopy have been used to study cell structure for many years, but atomic force microscopy is a more recent technique used to analyze cells, mainly due to the absence of techniques to prepare the samples. Isolated molecules or organelles, whole cells, and to a lesser extent in situ cell structure have been observed by different atomic force microscopy imaging modes. Here, we review efforts intended to analyze in situ the cell structures using approaches involving imaging of the surface of semithin sections of samples embedded in resin and sections prepared with an ultramicrotome. The results of such studies are discussed in relation to their implications to analyze the fine structure of organelles at the nanoscale in situ at enhanced resolution compared to light microscopy.


Assuntos
Linfócitos/citologia , Linfócitos/ultraestrutura , Microscopia de Força Atômica , Organelas/ultraestrutura , Animais , Resinas Epóxi/química , Humanos , Linfócitos/química , Organelas/química
10.
Molecules ; 23(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562662

RESUMO

Human islet amyloid peptide (hIAPP1-37) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP1-37) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP1-37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP1-37. When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP1-37. Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP1-37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A-F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.


Assuntos
Amiloide/química , Diabetes Mellitus/tratamento farmacológico , Descoberta de Drogas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Terapia de Alvo Molecular , Animais , Sobrevivência Celular/efeitos dos fármacos , Cerebelo/patologia , Curcumina/química , Curcumina/uso terapêutico , Diabetes Mellitus/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Cinética , Camundongos , Simulação de Acoplamento Molecular , Agregados Proteicos , Dobramento de Proteína , Multimerização Proteica , Ratos Wistar
11.
Sci Rep ; 7(1): 11552, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912603

RESUMO

Protein folding is a process of self-assembly defined by the sequence of the amino acids of the protein involved. Additionally, proteins tend to unfold, misfold and aggregate due to both intrinsic and extrinsic causes. Human islet amyloid polypeptide (hIAPP) aggregation is an early step in diabetes mellitus. However, the aggregation of rat IAPP (rIAPP) remains an open question. Adult female Sprague-Dawley rats weighing 150-250 g were divided into two groups. The experimental group (streptozotocin [STZ]) (n = 21) received an intraperitoneal injection of a single dose of 40 mg/kg STZ. We used the mouse anti-IAPP antibody and the anti-amyloid oligomer antibody to study the temporal course of rIAPP oligomerization during STZ-induced diabetes using a wide array of methods, strategies and ideas derived from biochemistry, cell biology, and proteomic medicine. Here, we demonstrated the tendency of rIAPP to aggregate and trigger cooperative processes of self-association or hetero-assembly that lead to the formation of amyloid oligomers (trimers and hexamers). Our results are the first to demonstrate the role of rIAPP amyloid oligomers in the development of STZ-induced diabetes in rats. The IAPP amyloid oligomers are biomarkers of the onset and progression of diabetes and could play a role as therapeutic targets.


Assuntos
Diabetes Mellitus Experimental/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Dobramento de Proteína , Animais , Agregação Patológica de Proteínas , Multimerização Proteica , Ratos Sprague-Dawley
12.
Microsc Microanal ; 22(3): 621-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27126372

RESUMO

Nucleolar assembly is a cellular event that requires the synthesis and processing of ribosomal RNA, in addition to the participation of pre-nucleolar bodies (PNBs) at the end of mitosis. In mammals and plants, nucleolar biogenesis has been described in detail, but in unicellular eukaryotes it is a poorly understood process. In this study, we used light and electron microscopy cytochemical techniques to investigate the distribution of nucleolar components in the pathway of nucleolus rebuilding during closed cell division in epimastigotes of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis. Silver impregnation specific for nucleolar organizer regions and an ethylenediaminetetraacetic acid regressive procedure to preferentially stain ribonucleoprotein revealed the conservation and dispersion of nucleolar material throughout the nucleoplasm during cell division. Furthermore, at the end of mitosis, the argyrophilic proteins were concentrated in the nucleolar organizer region. Unexpectedly, accumulation of nucleolar material in the form of PNBs was not visualized. We suggest that formation of the nucleolus in epimastigotes of T. cruzi occurs by a process that does not require the concentration of nucleolar material within intermediate nuclear bodies such as mammalian and plant PNBs.


Assuntos
Núcleo Celular/fisiologia , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia , Animais , Nucléolo Celular/fisiologia , Mitose , RNA Ribossômico/metabolismo
13.
Anat Rec (Hoboken) ; 299(5): 549-56, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26833978

RESUMO

The nucleolus is a nuclear organelle involved in ribosome biogenesis. In most eukaryotes this structure disperses during prophase through anaphase and reorganizes at telophase by a process known as nucleologenesis. This process involves new transcription of ribosomal DNA at the nucleolar organizer region and the formation of prenucleolar bodies fusing to it. In Giardia lamblia, for a long time considered the only anucleolated eukaryote, a very small nucleolus has been recently described. In order to evaluate whether nucleologenesis is also present in Giardia, we analyzed the distribution of nucleolar material during telophase using different light and electron microscopy techniques including silver staining for the nucleolar organizer. Results indicate that in G. lamblia, nucleolar elements persist mainly as an intranuclear peripheral organelle during all stages of division, including telophase, however, no prenucleolar bodies are detected in the nucleoplasm. Therefore, in the parasite, nucleolar material is present throughout cell division including telophase and formation of prenucleolar bodies may not be required for nucleologenesis.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Giardia lamblia/metabolismo , Mitose/fisiologia , Região Organizadora do Nucléolo/metabolismo , Nucléolo Celular/química , Nucléolo Celular/ultraestrutura , Núcleo Celular/química , Núcleo Celular/ultraestrutura , DNA Ribossômico/metabolismo , Giardia lamblia/citologia , Giardia lamblia/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteínas Nucleares/metabolismo , Região Organizadora do Nucléolo/química , Região Organizadora do Nucléolo/ultraestrutura
14.
PLoS One ; 10(9): e0135292, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26327208

RESUMO

The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aß17-42 and Aß16-21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are able to protect and recondition the cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP20-29 fragment or by a low potassium medium, regardless of their capacity for accelerating or inhibiting in vitro formation of fibers. In vivo animal experiments are required to study the impact of chemical chaperones in cognitive and metabolic syndromes.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/efeitos dos fármacos , Animais , Sítios de Ligação , Dicroísmo Circular , Simulação por Computador , Descoberta de Drogas/métodos , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/farmacologia , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Albumina Sérica/metabolismo , Albumina Sérica/farmacologia , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia
15.
FEMS Microbiol Lett ; 313(1): 41-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20880201

RESUMO

Our group is interested in rRNA and ribosome biogenesis in the parasitic protozoan Trypanosoma cruzi. Epimastigotes represent an extracellular replicative stage of T. cruzi and can be cultured in axenic media. The growth curve of epimastigotes allows assessment of potential differences in the nucleoli of cells undergoing growth-rate transitions. To establish cellular parameters for studying ribosome biogenesis in T. cruzi, a morphometric analysis of the nucleoli of cultured cells in the exponential and stationary phases was conducted. Electron micrograph-based measurements of nuclear sections from independent cells demonstrated that the nucleolar area is over twofold higher in exponentially growing cells, as compared with epimastigotes in the stationary phase. The granular component of the nucleoli of actively growing cells was the main structural element. Cycloheximide moderately reduced the apparent size of the nucleoli without an apparent disruption of their architecture. Our results provide a firm basis for the establishment of an experimental model to study the organization of the nucleolus during the growth and development of T. cruzi.


Assuntos
Trypanosoma cruzi/citologia , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/ultraestrutura , Cicloeximida/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/ultraestrutura
16.
Mol Biochem Parasitol ; 164(2): 126-30, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19146887

RESUMO

Taenia solium infections continue being a health problem in undeveloped countries, and few effective control measures against this parasite are being applied. Antimicrobial peptides (AMPs) belong to the innate immune response and capable of destroying pathogens. We tested the ability of two AMPs, Temporin A (TA) and Iseganan IB-367 (IB-367) to damage T. crassiceps cysticerci in vitro. Doses of 200 and 400 microg/ml of TA and IB-367 caused cysticerci to shrink, lose motility, the formation of macrovesicles in the tegument, as well as decreased evagination properties. These changes were observed as early as 3-6h and became more pronounced over 24h, when the morphological changes of the bladders became evident by both light and electron microscopy. Electron micrographs of cysticerci exposed to peptides showed initial changes as collapsed microvesicles in the tegument, with formation of large vesicles and extrusion of tegumentary tissues into the surrounding media, which led to complete loss of the tegument as well as shrinkage and complete loss of structure of parenchymal tissue after 24h. Peptides administered to cysticercotic mice one month post-infection in a single intraperitoneal dose of 200 or 400 microg, reduced the parasite load by 25% for IB-367, and 50% for TA. The humoral response of infected mice does not appear capable of killing surviving cysticerci. Our studies show that in vitro, AMPs severely damage the tegument and the scolex, and open a new pathway for biological drug design or the development of transgenic animals that over express these peptides capable of killing the cysticerci in vivo.


Assuntos
Anti-Helmínticos/farmacologia , Peptídeos/farmacologia , Proteínas/farmacologia , Taenia/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos , Cisticercose/tratamento farmacológico , Cysticercus/anatomia & histologia , Cysticercus/efeitos dos fármacos , Cysticercus/fisiologia , Feminino , Camundongos , Microscopia , Microscopia Eletrônica , Peptídeos/uso terapêutico , Proteínas/uso terapêutico , Taenia/anatomia & histologia , Taenia/fisiologia
17.
Biochim Biophys Acta ; 1777(2): 202-10, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18036550

RESUMO

Two genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Mitocôndrias/enzimologia , Subunidades Proteicas/química , Toxoplasma/enzimologia , Animais , Dimerização , Evolução Molecular , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...