Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 103: 117673, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518734

RESUMO

Our understanding of sterol transport proteins (STPs) has increased exponentially in the last decades with advances in the cellular and structural biology of these important proteins. However, small molecule probes have only recently been developed for a few selected STPs. Here we describe the synthesis and evaluation of potential proteolysis-targeting chimeras (PROTACs) based on inhibitors of the STP Aster-A. Based on the reported Aster-A inhibitor autogramin-2, ten PROTACs were synthesized. Pomalidomide-based PROTACs functioned as fluorescent probes due to the intrinsic fluorescent properties of the aminophthalimide core, which in some cases was significantly enhanced upon Aster-A binding. Most PROTACs maintained excellent binary affinity to Aster-A, and one compound, NGF3, showed promising Aster-A degradation in cells. The tools developed here lay the foundation for optimizing Aster-A fluorescent probes and degraders and studying its activity and function in vitro and in cells.


Assuntos
Proteínas de Transporte , Corantes Fluorescentes , Corantes Fluorescentes/farmacologia , Esteróis , Proteólise
2.
Chem Sci ; 14(45): 12973-12983, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023519

RESUMO

Squalene synthase (SQS) is an essential enzyme in the mevalonate pathway, which controls cholesterol biosynthesis and homeostasis. Although catalytic inhibitors of SQS have been developed, none have been approved for therapeutic use so far. Herein we sought to develop SQS degraders using targeted protein degradation (TPD) to lower overall cellular cholesterol content. We found that KY02111, a small molecule ligand of SQS, selectively causes SQS to degrade in a proteasome-dependent manner. Unexpectedly, compounds based on the same scaffold linked to E3 ligase recruiting ligands led to SQS stabilization. Proteomic analysis found KY02111 to reduce only the levels of SQS, while lipidomic analysis determined that KY02111-induced degradation lowered cellular cholesteryl ester content. Stabilizers shielded SQS from its natural turnover without recruiting their matching E3 ligase or affecting enzymatic target activity. Our work shows that degradation of SQS is possible despite a challenging biological setting and provides the first chemical tools to degrade and stabilize SQS.

3.
J Med Chem ; 66(16): 11536-11554, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566000

RESUMO

The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.


Assuntos
Alcaloides , Quinuclidinas , Serotonina , Alcaloides/farmacologia , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Receptores de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tropanos , Quinuclidinas/química , Quinuclidinas/farmacologia
4.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36942862

RESUMO

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Assuntos
Biologia , Humanos , Paris
5.
Cell Chem Biol ; 30(2): 127-129, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36800990

RESUMO

In this issue of Cell Chemical Biology, Liu et al. describe the natural product DMBP as the first tool compound for VPS41. Treatment with DMBP induced vacuolization and methuosis and inhibited autophagic flux in lung and pancreatic cancer cell lines, validating VPS41 as a potential therapeutic target.


Assuntos
Autofagia , Vacúolos , Vacúolos/metabolismo , Morte Celular
6.
Chembiochem ; 24(5): e202200555, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594441

RESUMO

Combining natural product fragments to design new scaffolds with unprecedented bioactivity is a powerful strategy for the discovery of tool compounds and potential therapeutics. However, the choice of fragments to couple and the biological screens to employ remain open questions in the field. By choosing a primary fragment containing the A/B ring system of estradiol and fusing it to nine different secondary fragments, we were able to identify compounds that modulated four different phenotypes: inhibition of autophagy and osteoblast differentiation, as well as potassium channel and tubulin modulation. The latter two were uncovered by using unbiased morphological profiling with a cell-painting assay. The number of hits and variety in bioactivity discovered validates the use of recombining natural product fragments coupled to phenotypic screening for the rapid identification of biologically diverse compounds.


Assuntos
Produtos Biológicos , Naftalenos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Naftalenos/síntese química , Estradiol/química
7.
Chem Commun (Camb) ; 59(5): 563-566, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36537010

RESUMO

We report bistable indole-containing hemithioindigos (HTIs) with one-way quantitative photoswitching properties. Supported by state-averaged CASPT2/CASSCF calculations, we propose a mechanism for the observed one-way photoswitching that involves an isomer-specific excited state intramolecular proton transfer (ESIPT). Additionally, we developed a thermally bistable oligomer-inspired bipyrrole-containing HTI, which displays large band separation and bidirectional near-quantitative photoisomerization in the near-infrared, bio-optical window.

8.
Bioorg Med Chem ; 68: 116856, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716590

RESUMO

Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.


Assuntos
Proteínas de Transporte , Esteróis , Transporte Biológico , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Organelas/metabolismo , Esteróis/química , Esteróis/farmacologia
9.
ACS Chem Biol ; 17(7): 1677-1684, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35763711

RESUMO

Oxysterols are produced physiologically by many species; however, their distinct roles in regulating human physiology have not been studied systematically. The role of differing oxidation states and sites in mediating their biological functions is also unclear. As oxysterols have been associated with atherosclerosis, neurodegeneration, and cancer, a better understanding of their protein targets is desirable. To address this, we mapped the oxysterol interactome with three A- and B-ring oxidized sterols as well as 25-hydroxy cholesterol using thermal proteome profiling, validating selected targets with the cellular thermal shift assay and isothermal dose response fingerprinting. This revealed that the site of oxidation has a profound impact on target selectivity, with each oxysterol possessing an almost unique set of target proteins. Overall, targets clustered in pathways relating to vesicular transport and phosphoinositide metabolism, suggesting that while individual oxysterols bind to a unique set of proteins, the processes they modulate are highly interconnected.


Assuntos
Oxisteróis , Colesterol/metabolismo , Humanos , Oxirredução , Proteoma/metabolismo , Esteróis
10.
Angew Chem Int Ed Engl ; 60(51): 26755-26761, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34626154

RESUMO

Cholesterol transport proteins regulate a vast array of cellular processes including lipid metabolism, vesicular and non-vesicular trafficking, organelle contact sites, and autophagy. Despite their undoubted importance, the identification of selective modulators of this class of proteins has been challenging due to the structural similarities in the cholesterol-binding site. Herein we report a general strategy for the identification of selective inhibitors of cholesterol transport proteins via the synthesis of a diverse sterol-inspired compound collection. Fusion of a primary sterol fragment to an array of secondary privileged scaffolds led to the identification of potent and selective inhibitors of the cholesterol transport protein Aster-C, which displayed a surprising preference for the unnatural-sterol AB-ring stereochemistry and new inhibitors of Aster-A. We propose that this strategy can and should be applied to any therapeutically relevant sterol-binding protein.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Colesterol/metabolismo , Esteróis/farmacologia , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Humanos , Estrutura Molecular , Esteróis/síntese química , Esteróis/química
12.
Nat Chem Biol ; 17(6): 653-664, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34035513

RESUMO

Autophagy is implicated in a wide range of (patho)physiological processes including maintenance of cellular homeostasis, neurodegenerative disorders, aging and cancer. As such, small molecule autophagy modulators are in great demand, both for their ability to act as tools to better understand this essential process and as potential therapeutics. Despite substantial advances in the field, major challenges remain in the development and comprehensive characterization of probes that are specific to autophagy. In this Review, we discuss recent developments in autophagy-modulating small molecules, including the specific challenges faced in the development of activators and inhibitors, and recommend guidelines for their use. Finally, we discuss the potential to hijack the process for targeted protein degradation, an area of great importance in chemical biology and drug discovery.


Assuntos
Autofagia/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Animais , Descoberta de Drogas , Tratamento Farmacológico , Humanos , Fagossomos/efeitos dos fármacos
13.
J Med Chem ; 64(9): 5252-5275, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33856791

RESUMO

Reactive oxygen species (ROS) are involved in physiological cellular processes including differentiation, proliferation, and apoptosis by acting as signaling molecules or regulators of transcription factors. The maintenance of appropriate cellular ROS levels is termed redox homeostasis, a balance between their production and neutralization. High concentrations of ROS may contribute to severe pathological events including cancer, neurodegenerative, and cardiovascular diseases. In recent years, approaches to target the sources of ROS production directly in order to develop tool compounds or potential therapeutics have been explored. Herein, we briefly outline the major sources of cellular ROS production and comprehensively review the targeting of these by small-molecule inhibitors. We critically assess the value of ROS inhibitors with different mechanisms-of-action, including their potency, mode-of-action, known off-target effects, and clinical or preclinical status, while suggesting future avenues of research in the field.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Animais , Ferroptose/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monoaminoxidase/química , Monoaminoxidase/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/química , Bibliotecas de Moléculas Pequenas/farmacologia , Xantina Desidrogenase/química , Xantina Desidrogenase/metabolismo
14.
Angew Chem Int Ed Engl ; 60(29): 15705-15723, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33644925

RESUMO

Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.


Assuntos
Produtos Biológicos/química , Evolução Química , Humanos , Bibliotecas de Moléculas Pequenas/química
15.
Cell Chem Biol ; 28(12): 1750-1757.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33725479

RESUMO

Signaling pathways are frequently activated through signal-receiving membrane proteins, and the discovery of small molecules targeting these receptors may yield insights into their biology. However, due to their intrinsic properties, membrane protein targets often cannot be identified by means of established approaches, in particular affinity-based proteomics, calling for the exploration of new methods. Here, we report the identification of indophagolin as representative member of an indoline-based class of autophagy inhibitors through a target-agnostic phenotypic assay. Thermal proteome profiling and subsequent biochemical validation identified the purinergic receptor P2X4 as a target of indophagolin, and subsequent investigations suggest that indophagolin targets further purinergic receptors. These results demonstrate that thermal proteome profiling may enable the de novo identification of membrane-bound receptors as cellular targets of bioactive small molecules.


Assuntos
Autofagia/efeitos dos fármacos , Proteoma/genética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Temperatura , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X4/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Angew Chem Int Ed Engl ; 59(30): 12470-12476, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32108411

RESUMO

Pseudo-natural-product (NP) design combines natural product fragments to provide unprecedented NP-inspired compounds not accessible by biosynthesis, but endowed with biological relevance. Since the bioactivity of pseudo-NPs may be unprecedented or unexpected, they are best evaluated in target agnostic cell-based assays monitoring entire cellular programs or complex phenotypes. Here, the Cinchona alkaloid scaffold was merged with the indole ring system to synthesize indocinchona alkaloids by Pd-catalyzed annulation. Exploration of indocinchona alkaloid bioactivities in phenotypic assays revealed a novel class of azaindole-containing autophagy inhibitors, the azaquindoles. Subsequent characterization of the most potent compound, azaquindole-1, in the morphological cell painting assay, guided target identification efforts. In contrast to the parent Cinchona alkaloids, azaquindoles selectively inhibit starvation- and rapamycin-induced autophagy by targeting the lipid kinase VPS34.


Assuntos
Autofagia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Catálise , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Células MCF-7 , Paládio/química
17.
Nat Chem ; 12(3): 227-235, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015480

RESUMO

Natural products (NPs) are a significant source of inspiration towards the discovery of new bioactive compounds based on novel molecular scaffolds. However, there are currently only a small number of guiding synthetic strategies available to generate novel NP-inspired scaffolds, limiting both the number and types of compounds accessible. In this Perspective, we discuss a design approach for the preparation of biologically relevant small-molecule libraries, harnessing the unprecedented combination of NP-derived fragments as an overarching strategy for the synthesis of new bioactive compounds. These novel 'pseudo-natural product' classes retain the biological relevance of NPs, yet exhibit structures and bioactivities not accessible to nature or through the use of existing design strategies. We also analyse selected pseudo-NP libraries using chemoinformatic tools, to assess their molecular shape diversity and properties. To facilitate the exploration of biologically relevant chemical space, we identify design principles and connectivity patterns that would provide access to unprecedented pseudo-NP classes, offering new opportunities for bioactive small-molecule discovery.


Assuntos
Produtos Biológicos/química , Bibliotecas de Moléculas Pequenas/química , Quimioinformática , Técnicas de Química Sintética , Bases de Dados de Compostos Químicos , Desenho de Fármacos
18.
ACS Omega ; 5(1): 822-831, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956833

RESUMO

Polo-like kinase 1 (PLK1) is a key regulator of mitosis and a recognized drug target for cancer therapy. Inhibiting the polo-box domain of PLK1 offers potential advantages of increased selectivity and subsequently reduced toxicity compared with targeting the kinase domain. However, many if not all existing polo-box domain inhibitors have been shown to be unsuitable for further development. In this paper, we describe a novel compound series, which inhibits the protein-protein interactions of PLK1 via the polo-box domain. We combine high throughput screening with molecular modeling and computer-aided design, synthetic chemistry, and cell biology to address some of the common problems with protein-protein interaction inhibitors, such as solubility and potency. We use molecular modeling to improve the solubility of a hit series with initially poor physicochemical properties, enabling biophysical and biochemical characterization. We isolate and characterize enantiomers to improve potency and demonstrate on-target activity in both cell-free and cell-based assays, entirely consistent with the proposed binding model. The resulting compound series represents a promising starting point for further progression along the drug discovery pipeline and a new tool compound to study kinase-independent PLK functions.

19.
Angew Chem Int Ed Engl ; 59(14): 5721-5729, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31769920

RESUMO

Chemical proteomics is widely applied in small-molecule target identification. However, in general it does not identify non-protein small-molecule targets, and thus, alternative methods for target identification are in high demand. We report the discovery of the autophagy inhibitor autoquin and the identification of its molecular mode of action using image-based morphological profiling in the cell painting assay. A compound-induced fingerprint representing changes in 579 cellular parameters revealed that autoquin accumulates in lysosomes and inhibits their fusion with autophagosomes. In addition, autoquin sequesters Fe2+ in lysosomes, resulting in an increase of lysosomal reactive oxygen species and ultimately cell death. Such a mechanism of action would have been challenging to unravel by current methods. This work demonstrates the potential of the cell painting assay to deconvolute modes of action of small molecules, warranting wider application in chemical biology.


Assuntos
Autofagia , Ferro/metabolismo , Lisossomos/metabolismo , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Alcaloides de Cinchona/química , Alcaloides de Cinchona/farmacologia , Humanos , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
20.
Angew Chem Int Ed Engl ; 58(47): 17016-17025, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469221

RESUMO

Bioactive compound design based on natural product (NP) structure may be limited because of partial coverage of NP-like chemical space and biological target space. These limitations can be overcome by combining NP-centered strategies with fragment-based compound design through combination of NP-derived fragments to afford structurally unprecedented "pseudo-natural products" (pseudo-NPs). The design, synthesis, and biological evaluation of a collection of indomorphan pseudo-NPs that combine biosynthetically unrelated indole- and morphan-alkaloid fragments are described. Indomorphane derivative Glupin was identified as a potent inhibitor of glucose uptake by selectively targeting and upregulating glucose transporters GLUT-1 and GLUT-3. Glupin suppresses glycolysis, reduces the levels of glucose-derived metabolites, and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT-1 and GLUT-3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity.


Assuntos
Produtos Biológicos/farmacologia , Proliferação de Células , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 3/antagonistas & inibidores , Glucose/metabolismo , Morfinanos/síntese química , Neoplasias/tratamento farmacológico , Transporte Biológico , Ciclo Celular , Glicólise , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...