Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Peptides ; 175: 171181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423212

RESUMO

Thyrotropin-releasing hormone (TRH) acts centrally to exert pleiotropic actions independently from its endocrine function, including antinociceptive effects against somatic pain in rodents. Whether exogenous or endogenous activation of TRH signaling in the brain modulates visceral pain is unknown. Adult male Sprague-Dawley rats received an intracerebroventricular (ICV) injection of the stable TRH analog, RX-77368 (10, 30 and 100 ng/rat) or saline (5 µl) or were semi-restrained and exposed to cold (4°C) for 45 min. The visceromotor response (VMR) to graded phasic colorectal distensions (CRD) was monitored using non-invasive intracolonic pressure manometry. Naloxone (1 mg/kg) was injected subcutaneously 10 min before ICV RX-77368 or saline. Fecal pellet output was monitored for 1 h after ICV injection. RX-77368 ICV (10, 30 and 100 ng/rat) reduced significantly the VMR by 56.7%, 67.1% and 81.1% at 40 mmHg and by 30.3%, 58.9% and 87.4% at 60 mmHg respectively vs ICV saline. Naloxone reduced RX-77368 (30 and 100 ng, ICV) analgesic response by 51% and 28% at 40 mmHg and by 30% and 33% at 60 mmHg respectively, but had no effect per se. The visceral analgesia was mimicked by the acute exposure to cold. At the doses of 30 and 100 ng, ICV RX-77368 induced defecation within 30 min. These data established the antinociceptive action of RX-77368 injected ICV in a model of visceral pain induced by colonic distension through recruitment of both opioid and non-opioid dependent mechanisms.


Assuntos
Neoplasias Colorretais , Ácido Pirrolidonocarboxílico/análogos & derivados , Hormônio Liberador de Tireotropina/análogos & derivados , Dor Visceral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Dor Visceral/tratamento farmacológico , Analgésicos/farmacologia , Naloxona/farmacologia
2.
Cell Tissue Res ; 395(1): 39-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37982872

RESUMO

The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm2 in the AC, 166/mm2 in the DC), where they make up about a third of HuCD-IR neurons, compared to the OSP and MP (19-22% and 13-17%, respectively, P < 0.001-0.0001). HuCD/SP/ChAT-IR neurons (up to 23%) were overall more abundant than HuCD/SP/nNOS-IR neurons (< 10%). Most SP-IR neurons contained ChAT-IR (62-85%), whereas 18-38% contained nNOS-IR with the highest peak in the OSP. A subpopulation of SP-IR neurons contains both ChAT- and nNOS-IR with the highest peak in the OSP and ISP of DC (33-36%) and the lowest in the ISP of AC (< 10%, P < 0.001). SP-IR varicose fibers were abundant in the ganglia. This study shows that SP-IR neurons are functionally distinct with variable proportions in different plexuses in the AC and DC reflecting diverse functions of specific colonic regions.


Assuntos
Plexo Mientérico , Plexo Submucoso , Humanos , Suínos , Animais , Substância P , Neurônios , Colo , Colina O-Acetiltransferase
3.
Front Neurosci ; 17: 1204233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650102

RESUMO

Introduction: The central and peripheral nervous systems provide cholinergic innervation in the colon. The ability to assess their neuroanatomical distinctions is still a challenge. The pig is regarded as a relevant translational model due to the close similarity of its enteric nervous system (ENS) with that of human. Opioid-induced constipation is one of the most common side effects of opioid therapy. Methods: We developed an approach to differentiate the central and peripheral cholinergic innervation of the pig colon using double immunolabeling with a novel mouse anti-human peripheral type of choline acetyltransferase (hpChAT) antibody combined with a rabbit anti-common type of ChAT (cChAT) antibody, a reliable marker of cholinergic neurons in the central nervous system. We examined their spatial configurations in 3D images of the ENS generated from CLARITY-cleared colonic segments. The density was quantitated computationally using Imaris 9.7. We assessed changes in the distal colon induced by daily oral treatment for 4 weeks with the µ opioid receptor agonist, loperamide (0.4 or 3 mg/kg). Results: The double labeling showed strong cChAT immunoreactive (ir) fibers in the cervical vagus nerve and neuronal somata and fibers in the ventral horn of the sacral (S2) cord while hpChAT immunoreactivity was visualized only in the ENS but not in the vagus or sacral neural structures indicating the selectivity of these two antibodies. In the colonic myenteric plexus, dense hpChAT-ir neurons and fibers and varicose cChAT-ir fibers surrounding hpChAT-ir neurons were simultaneously visualized in 3D. The density of cChAT-ir varicose fibers in the outer submucosal plexus of both males and females were higher in the transverse and distal colon than in the proximal colon and in the myenteric plexus compared to the outer submucosal plexus and there was no cChAT innervation in the inner submucosal plexus. The density of hpChAT in the ENS showed no segmental or plexus differences in both sexes. Loperamide at the highest dose significantly decreased the density hpChAT-ir fibers + somata in the myenteric plexus of the distal colon. Discussion: These data showed the distinct density of central cholinergic innervation between myenteric and submucosal plexuses among colonic segments and the localization of cChAT-ir fibers around peripheral hpChAT neurons in 3D. The reduction of cholinergic myenteric innervation by chronic opiate treatment points to target altered prokinetic cholinergic pathway to counteract opiate constipation.

4.
IEEE Trans Biomed Circuits Syst ; 17(5): 941-951, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363840

RESUMO

Monitoring of colon activity is currently limited to tethered systems like anorectal manometry. These systems have significant drawbacks, but fundamentally limit the observation time of colon activity, reducing the likelihood of detecting specific clinical events. While significant technological advancement has been directed to mobile sensor capsules, this work describes the development and feasibility of a stationary sensor for describing the coordinated activity between neighboring segments of the colon. Unlike wireless capsules, this device remains in position and measures propagating pressure waves and impedances between colon segments to describe activity and motility. This low-power, flexible, wireless sensor-the colon monitor to capture activity (ColoMOCA) was validated in situ and in vivo over seven days of implantation. The ColoMOCA diameter was similar to common endoscopes to allow for minimally invasive diagnostic placement. The ColoMOCA included two pressure sensors, and three impedance-sensing electrodes arranged to describe the differential pressures and motility between adjacent colon segments. To prevent damage after placement in the colon, the ColoMOCA was fabricated with a flexible polyimide circuit board and a silicone rubber housing. The resulting device was highly flexible and suitable for surgical attachment to the colon wall. In vivo testing performed in eleven animals demonstrated suitability of both short term (less than 3 hours) and 7-day implantations. Data collected wirelessly from animal experiments demonstrated the ColoMOCA described colon activity similarly to wired catheters and allowed untethered, conscious monitoring of organ behavior.


Assuntos
Colo , Próteses e Implantes , Animais , Eletrodos , Impedância Elétrica , Catéteres
5.
Commun Biol ; 6(1): 98, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693960

RESUMO

The porcine gut is increasingly regarded as a useful translational model. The enteric nervous system in the colon coordinates diverse functions. However, knowledge of the molecular profiling of porcine enteric nerve system and its similarity to that of human is still lacking. We identified the distinct transcriptional programs associated with functional characteristics between inner submucosal and myenteric ganglia in porcine proximal and distal colon using bulk RNA and single-cell RNA sequencing. Comparative transcriptomics of myenteric ganglia in corresponding colonic regions of pig and human revealed highly conserved programs in porcine proximal and distal colon, which explained >96% of their transcriptomic responses to vagal nerve stimulation, suggesting that porcine proximal and distal colon could serve as predictors in translational studies. The conserved programs specific for inflammatory modulation were displayed in pigs with vagal nerve stimulation. This study provides a valuable transcriptomic resource for understanding of human colonic functions and neuromodulation using porcine model.


Assuntos
Sistema Nervoso Entérico , Transcriptoma , Humanos , Animais , Suínos , Colo/inervação
6.
Peptides ; 157: 170881, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36185037

RESUMO

Peptide CRF antagonists injected peripherally alleviate stress-induced visceral hypersensitivity (SIVH) to colorectal distension (CRD) in rodents. Here we further evaluated the dose and time-dependent inhibitory activity of several long-acting peptide CRF receptor antagonists related to astressin on SIVH, focusing on astressin C (AstC), which previously showed high efficacy on stress-related alterations of HPA axis and gut secretomotor functions. Male and female Sprague-Dawley rats pretreated subcutaneously (SC) with AstC were injected intraperitoneally (IP) with CRF 15 min later. The visceromotor responses (VMR) to graded phasic CRD (10, 20, 40 and 60 mmHg) were monitored at basal, 15 min and up to 1-8 days after pretreatment. Two other astressin analogs, hexanoyl-astressin D (Hex-AstD) and [CαMeVal19,32]-AstC, were also tested. The response to IP CRF was sex-dependent with female rats requiring a higher dose to exhibit visceral hyperalgesia. Pretreatment with AstC (30-1000 µg/kg) resulted in a dose-related inhibition of IP CRF-induced SIVH and diarrhea in both sexes. The highest dose prevented SIVH and diarrhea up to 5-7 days after a single SC injection and was lost on day 7 (females) and day 8 (males) but reinstated after a second injection of AstC on day 8 or 9 respectively. [CαMeVal19,32]-AstC and Hex-AstD (1000 µg/kg in males) also prevented SIVH. These data show the potent long-lasting anti-hyperalgesic effect of AstC in an acute model of SIVH in both male and female rats. This highlights the potential of long-acting peripheral CRF antagonists to treat stress-sensitive irritable bowel syndrome.


Assuntos
Dor Visceral , Animais , Hormônio Liberador da Corticotropina/metabolismo , Diarreia , Feminino , Hiperalgesia/tratamento farmacológico , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Fragmentos de Peptídeos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/tratamento farmacológico , Dor Visceral/tratamento farmacológico
7.
Sci Rep ; 12(1): 13761, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961998

RESUMO

Electrical stimulation has been demonstrated as an alternative approach to alleviate intractable colonic motor disorders, whose effectiveness can be evaluated through colonic motility assessment. Various methods have been proposed to monitor the colonic motility and while each has contributed towards better understanding of colon motility, a significant limitation has been the spatial and temporal low-resolution colon motility data acquisition and analysis. This paper presents the study of employing bio-impedance characterization to monitor colonic motor activity. Direct distal colon stimulation was undertaken in anesthetized pigs to validate the bio-impedance scheme simultaneous with luminal manometry monitoring. The results indicated that the significant decreases of bio-impedance corresponded to strong colonic contraction in response to the electrical stimulation in the distal colon. The magnitude/power of the dominant frequencies of phasic colonic contractions identified at baseline (in the range 2-3 cycles per minute (cpm)) were increased after the stimulation. In addition, positive correlations have been found between bio-impedance and manometry. The proposed bio-impedance-based method can be a viable candidate for monitoring colonic motor pattern with high spatial and temporal resolution. The presented technique can be integrated into a closed-loop therapeutic device in order to optimize its stimulation protocol in real-time.


Assuntos
Doenças do Colo , Motilidade Gastrointestinal , Animais , Colo/fisiologia , Impedância Elétrica , Motilidade Gastrointestinal/fisiologia , Manometria/métodos , Suínos
9.
Cell Tissue Res ; 383(2): 645-654, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32965550

RESUMO

The enteric nervous system (ENS) controls gastrointestinal functions. In large mammals' intestine, it comprises an inner (ISP) and outer (OSP) submucous plexus and a myenteric plexus (MP). This study quantifies enteric neurons in the ISP, OSP, and MP of the pig ascending (AC) and descending colon (DC) using the HuC/D, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) neuronal markers in whole mount preparations with multiple labeling immunofluorescence. We established that the ISP contains the highest number of HuC/D neurons/mm2, which were more abundant in AC vs. DC, followed by OSP and MP with similar density in AC and DC. In the ISP, the density of ChAT immunoreactive (IR) neurons was very similar in AC and DC (31% and 35%), nNOS-IR neurons were less abundant in AC than DC (15% vs. 42%, P < 0.001), and ChAT/nNOS-IR neurons were 5% and 10%, respectively. In the OSP, 39-44% of neurons were ChAT-IR in AC and DC, while 45% and 38% were nNOS-IR and 10-12% were ChAT/nNOS-IR (AC vs. DC P < 0.05). In the MP, ChAT-IR neurons were 44% in AC and 54% in DC (P < 0.05), nNOS-IR neurons were 50% in both, and ChAT/nNOS-IR neurons were 12 and 18%, respectively. The ENS architecture with multilayered submucosal plexuses and the distribution of functionally distinct groups of neurons in the pig colon are similar to humans, supporting the suitability of the pig as a model and providing the platform for investigating the mechanisms underlying human colonic diseases.


Assuntos
Colina O-Acetiltransferase/imunologia , Colo/inervação , Sistema Nervoso Entérico/citologia , Plexo Mientérico/citologia , Neurônios/enzimologia , Óxido Nítrico Sintase/imunologia , Plexo Submucoso/citologia , Animais , Contagem de Células , Masculino , Suínos , Porco Miniatura
10.
Neurogastroenterol Motil ; 32(11): e13925, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32578346

RESUMO

BACKGROUND: Knowledge on optimal electrical stimulation (ES) modalities and region-specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model. METHODS: In male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi-electrode array panels and CBVN ES (2 Hz, 0.3-4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square-wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes. KEY RESULTS: Direct colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1-6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances. CONCLUSION AND INFERENCES: In anesthetized pigs, the dominant contraction frequency band is 1-6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES-induced pancolonic contractions involve central neural network.


Assuntos
Colo/inervação , Estimulação Elétrica/métodos , Motilidade Gastrointestinal/fisiologia , Nervo Vago , Animais , Colo/fisiologia , Manometria , Sus scrofa , Suínos
11.
J Clin Invest ; 129(9): 3670-3685, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184596

RESUMO

Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn's-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge. Cox2 MKO also reduced inflammation resolving lipoxin A4 (LXA4) in intestinal tissue, while administration of an LXA4 analog rescued disease in Cox2 MKO mice fed CCHF. The apolipoprotein A-I (APOA1) mimetic 4F mitigated disease in both the Cox2 MKO/CCHF and piroxicam-accelerated Il10-/- models of inflammatory bowel disease (IBD) and reduced elevated levels of pro-inflammatory mediators in tissue and plasma. APOA1 mimetic Tg6F therapy was also effective in reducing intestinal inflammation in the Cox2 MKO/CCHF model. We further demonstrated that APOA1 mimetic peptides: i) inhibited LPS and oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidylcholine (oxPAPC) dependent pro-inflammatory responses in human macrophages and intestinal epithelium; and ii) directly cleared pro-inflammatory lipids from mouse intestinal tissue and plasma. Our results support a causal role for pro-inflammatory and inflammation resolving lipids in IBD pathology and a translational potential for APOA1 mimetic peptides for the treatment of IBD.


Assuntos
Apolipoproteína A-I/farmacologia , Ciclo-Oxigenase 2/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/patologia , Animais , Modelos Animais de Doenças , Endotoxinas/metabolismo , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Peptídeos/química , Permeabilidade , Piroxicam/farmacologia , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais
12.
Neurogastroenterol Motil ; 31(2): e13489, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298965

RESUMO

BACKGROUND: Water avoidance stress (WAS) induces a naloxone-independent visceral analgesia in male rats under non-invasive conditions of monitoring. The objective of the study was to examine the role of brain CRF signaling in acute stress-induced visceral analgesia (SIVA). METHODS: Adult male Sprague-Dawley rats were chronically implanted with an intracerebroventricular (ICV) cannula. The visceromotor response (VMR) to graded phasic colorectal distension (CRD: 10, 20, 40, 60 mm Hg, 20 seconds, 4 minutes intervals) was monitored using manometry. The VMR to a first CRD (baseline) was recorded 5 minutes after an ICV saline injection, followed 1 hour later by ICV injection of either CRF (30, 100, or 300 ng and 1, 3, or 5 µg/rat) or saline and a second CRD, 5 minutes later. Receptor antagonists against CRF1 /CRF2 (astressin-B, 30 µg/rat), CRF2 (astressin2 -B, 10 µg/rat), oxytocin (tocinoic acid, 20 µg/rat), or vehicle were injected ICV 5 minutes before CRF (300 ng/rat, ICV) or 15 minutes before WAS (1 hour). KEY RESULTS: ICV CRF (100 and 300 ng) reduced the VMR to CRD at 60 mm Hg by -36.6% ± 6.8% and -48.7% ± 11.7%, respectively, vs baseline (P < 0.001), while other doses had no effect and IP CRF (10 µg/kg) induced visceral hyperalgesia. Astressin-B and tocinoic acid injected ICV induced hyperalgesia and prevented the analgesic effect of ICV CRF (300 ng/rat) and WAS, while astressin2 -B only blocked WAS-induced SIVA. CONCLUSIONS & INFERENCES: These data support a role for brain CRF signaling via CRF2 in SIVA in a model of WAS and CRD likely mediated by the activation of brain oxytocin pathway.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Hiperalgesia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
13.
Curr Mol Pharmacol ; 11(1): 51-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28240194

RESUMO

BACKGROUND: Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION: These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION: The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Trato Gastrointestinal/metabolismo , Transdução de Sinais , Animais , Trato Gastrointestinal/fisiopatologia , Humanos , Atividade Motora
14.
Stress ; 20(5): 421-448, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28617197

RESUMO

The immediate and long-term effects of exposure to early life stress (ELS) have been documented in humans and animal models. Even relatively brief periods of stress during the first 10 days of life in rodents can impact later behavioral regulation and the vulnerability to develop adult pathologies, in particular an impairment of cognitive functions and neurogenesis, but also modified social, emotional, and conditioned fear responses. The development of preclinical models of ELS exposure allows the examination of mechanisms and testing of therapeutic approaches that are not possible in humans. Here, we describe limited bedding and nesting (LBN) procedures, with models that produce altered maternal behavior ranging from fragmentation of care to maltreatment of infants. The purpose of this paper is to discuss important issues related to the implementation of this chronic ELS procedure and to describe some of the most prominent endpoints and consequences, focusing on areas of convergence between laboratories. Effects on the hypothalamic-pituitary adrenal (HPA) axis, gut axis and metabolism are presented in addition to changes in cognitive and emotional functions. Interestingly, recent data have suggested a strong sex difference in some of the reported consequences of the LBN paradigm, with females being more resilient in general than males. As both the chronic and intermittent variants of the LBN procedure have profound consequences on the offspring with minimal external intervention from the investigator, this model is advantageous ecologically and has a large translational potential. In addition to the direct effect of ELS on neurodevelopmental outcomes, exposure to adverse early environments can also have intergenerational impacts on mental health and function in subsequent generation offspring. Thus, advancing our understanding of the effect of ELS on brain and behavioral development is of critical concern for the health and wellbeing of both the current population, and for generations to come.


Assuntos
Maus-Tratos Infantis , Cognição , Emoções , Comportamento Materno , Comportamento de Nidação , Estresse Psicológico/psicologia , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos , Roupas de Cama, Mesa e Banho , Comportamento Animal , Epigênese Genética , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Recém-Nascido , Masculino , Modelos Animais , Neurogênese , Sistema Hipófise-Suprarrenal/metabolismo , Reprodutibilidade dos Testes , Resiliência Psicológica , Roedores , Fatores Sexuais , Estresse Psicológico/metabolismo
15.
Sci Rep ; 7: 42906, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211537

RESUMO

Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1-0.2 µm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr-/-) mice on a high-fat diet were orally administered with vehicle control or UFP (40 µg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman's analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Material Particulado/farmacologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Ceco/metabolismo , Colestanol/metabolismo , Colesterol/metabolismo , Citocinas/sangue , Dieta Hiperlipídica , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/sangue , Lisofosfolipídeos/análise , Lisofosfolipídeos/sangue , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Material Particulado/química , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética
16.
Gut ; 66(10): 1767-1778, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28096305

RESUMO

OBJECTIVES: Proteases are key mediators of pain and altered enteric neuronal signalling, although the types and sources of these important intestinal mediators are unknown. We hypothesised that intestinal epithelium is a major source of trypsin-like activity in patients with IBS and this activity signals to primary afferent and enteric nerves and induces visceral hypersensitivity. DESIGN: Trypsin-like activity was determined in tissues from patients with IBS and in supernatants of Caco-2 cells stimulated or not. These supernatants were also applied to cultures of primary afferents. mRNA isoforms of trypsin (PRSS1, 2 and 3) were detected by reverse transcription-PCR, and trypsin-3 protein expression was studied by western blot analysis and immunohistochemistry. Electrophysiological recordings and Ca2+ imaging in response to trypsin-3 were performed in mouse primary afferent and in human submucosal neurons, respectively. Visceromotor response to colorectal distension was recorded in mice administered intracolonically with trypsin-3. RESULTS: We showed that stimulated intestinal epithelial cells released trypsin-like activity specifically from the basolateral side. This activity was able to activate sensory neurons. In colons of patients with IBS, increased trypsin-like activity was associated with the epithelium. We identified that trypsin-3 was the only form of trypsin upregulated in stimulated intestinal epithelial cells and in tissues from patients with IBS. Trypsin-3 was able to signal to human submucosal enteric neurons and mouse sensory neurons, and to induce visceral hypersensitivity in vivo, all by a protease-activated receptor-2-dependent mechanism. CONCLUSIONS: In IBS, the intestinal epithelium produces and releases the active protease trypsin-3, which is able to signal to enteric neurons and to induce visceral hypersensitivity.


Assuntos
Células Epiteliais/enzimologia , Mucosa Intestinal/enzimologia , Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/genética , Tripsina/genética , Tripsina/metabolismo , Animais , Células CACO-2 , Estudos de Casos e Controles , Colo/enzimologia , Colo/inervação , Meios de Cultivo Condicionados/farmacologia , Dipeptídeos/farmacologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/diagnóstico por imagem , Sistema Nervoso Entérico/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Gânglios Espinais/citologia , Humanos , Hipersensibilidade/enzimologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Isoxazóis/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Microscopia Confocal , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Permeabilidade/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/metabolismo , Tripsina/farmacologia , Tripsinogênio/genética , Regulação para Cima
17.
J Neurogastroenterol Motil ; 23(1): 135-143, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27829577

RESUMO

BACKGROUND/AIMS: Wistar rat dams exposed to limited nesting stress (LNS) from post-natal days (PND) 2 to 10 display erratic maternal behavior, and their pups show delayed maturation of the hypothalamic-pituitary-adrenal axis and impaired epithelial barrier at PND10 and a visceral hypersensitivity at adulthood. Little is known about the impact of early life stress on the offspring before adulthood and the influence of sex. We investigated whether male and female rats previously exposed to LNS displays at weaning altered corticosterone, intestinal permeability, and microbiota. METHODS: Wistar rat dams and litters were maintained from PND2 to 10 with limited nesting/bedding materials and thereafter reverted to normal housing up to weaning (PND21). Control litters had normal housing. At weaning, we monitored body weight, corticosterone plasma levels (enzyme immunoassay), in vivo intestinal to colon permeability (fluorescein isothiocyanate-dextran 4 kDa) and fecal microbiota (DNA extraction and amplification of the V4 region of the 16S ribosomal RNA gene). RESULTS: At weaning, LNS pups had hypercorticosteronemia and enhanced intestinal permeability with females > males while body weights were similar. LNS decreased fecal microbial diversity and induced a distinct composition characterized by increased abundance of Gram positive cocci and reduction of fiber-degrading, butyrate-producing, and mucus-resident microbes. CONCLUSIONS: These data indicate that chronic exposure to LNS during the first week post-natally has sustained effects monitored at weaning including hypercorticosteronemia, a leaky gut, and dysbiosis. These alterations may impact on the susceptibility to develop visceral hypersensitivity in adult rats and have relevance to the development of irritable bowel syndrome in childhood.

18.
Neurogastroenterol Motil ; 28(11): 1663-1676, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27259385

RESUMO

BACKGROUND: Recent evidence from rat neuron-free mucosa study suggests that the membrane bile acid receptor TGR5 decreases colonic secretion under basal and stimulated conditions. As submucosal neurons are key players in secretory processes and highly express TGR5, we investigated their role in TGR5 agonist-induced inhibition of secretion and the pathways recruited. METHODS: TGR5 expression and localization were assessed in rat proximal (pC) and distal (dC) colon by qPCR and immunohistochemistry with double labeling for cholinergic neurons in whole-mount preparations. The influence of a selective (INT-777) or weak (ursodeoxycholic acid, UDCA) TGR5 agonist on colonic secretion was assessed in Ussing chambers, in dC preparation removing seromuscular ± submucosal tissues, in the presence of different inhibitors of secretion pathways. KEY RESULTS: TGR5 mRNA is expressed in full thickness dC and pC and immunoreactivity is located in colonocytes and pChAT-positive neurons. Addition of INT-777, and less potently UDCA, decreased colonic secretion in seromuscular stripped dC by -58.17± 2.6%. INT-777 effect on basal secretion was reduced in neuron-free and TTX-treated mucosal-submucosal preparations. Atropine, hexamethonium, indomethacin, and L-NAME all reduced significantly INT-777's inhibitory effect while the 5-HT4 antagonist, RS-39604, and lidocaine abolished it. INT-777 inhibited stimulated colonic secretion induced by nicotine, but not cisapride, carbachol or PGE2. CONCLUSIONS & INFERENCES: TGR5 activation inhibits basal and stimulated distal colonic secretion in rats by acting directly on epithelial cells and also inhibiting submucosal neurons. This could represent a counter-regulatory mechanism, at the submucosal level, of the known prosecretory effect of bile acids in the colon.


Assuntos
Ácidos Cólicos/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Ácidos e Sais Biliares/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
19.
PLoS One ; 11(5): e0155037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149676

RESUMO

A few studies indicate that limited nesting stress (LNS) alters maternal behavior and the hypothalamic pituitary adrenal (HPA) axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control) from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate-dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%), self-grooming (69%), and putting the pups back to the nest (167%). LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring.


Assuntos
Animais Recém-Nascidos/fisiologia , Intestinos/fisiologia , Comportamento Materno/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Animais Recém-Nascidos/metabolismo , Corticosterona/metabolismo , Feminino , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Mucosa Intestinal/metabolismo , Masculino , Permeabilidade , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Ratos , Ratos Wistar
20.
J Mol Neurosci ; 56(2): 377-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904310

RESUMO

Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety, feeding behavior, metabolic hormones, body mass composition and energy balance. The aim of the study was to elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones, and body mass composition. VIP deficient (VIP -/-) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP-/- mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP-/- mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. VIP plays a key role in the regulation of body phenotype by significantly enhancing body weight and fat mass accumulation. Therefore, VIP signaling is critical for the modulation of appetite/satiety and body mass phenotype and is a potential target for future treatment of obesity.


Assuntos
Apetite , Composição Corporal , Peptídeo Intestinal Vasoativo/metabolismo , Adiponectina/sangue , Animais , Metabolismo Energético , Comportamento Alimentar , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Pancreático/sangue , Peptídeo YY/sangue , Peptídeo Intestinal Vasoativo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...