Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2306848120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824530

RESUMO

The development of Trypanosoma brucei in its mammalian host is marked by a distinct morphological change as replicative "slender" forms differentiate into cell cycle arrested "stumpy" forms in a quorum-sensing-dependent manner. Although stumpy forms dominate chronic infections at the population level, the proportion of replicative parasites at the individual cell level and the irreversibility of arrest in the bloodstream are unclear. Here, we experimentally demonstrate that developmental cell cycle arrest is definitively irreversible in acute and chronic infections in mice. Furthermore, analysis of replicative capacity and single-cell transcriptome profiling reveal a temporal hierarchy, whereby cell cycle arrest and appearance of a reversible stumpy-like transcriptome precede irreversible commitment and morphological change. Unexpectedly, we show that proliferating parasites are exceptionally scarce in the blood after infections are established. This challenges the ability of bloodstream trypanosomes to sustain infection by proliferation or antigenic variation, these parasites instead being overwhelmingly adapted for transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Humanos , Camundongos , Animais , Infecção Persistente , Trypanosoma brucei brucei/metabolismo , Mamíferos , Perfilação da Expressão Gênica
2.
PLoS One ; 18(6): e0286526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37276213

RESUMO

Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for modulating host cell gene expression are DNA binding proteins bearing AT-hook motifs encoded within the TashAT gene cluster of the parasite genome. In this study, TashAT2 was transfected into bovine BoMac cells to generate three expressing and three non-expressing (opposite orientation) cell lines. RNA-Seq was conducted and differentially expressed (DE) genes identified. The resulting dataset was compared with genes differentially expressed between infected cells and non-infected cells, and DE genes between infected cell lines from susceptible Holstein vs tolerant Sahiwal cattle. Over 800 bovine genes displayed differential expression associated with TashAT2, 209 of which were also modulated by parasite infection. Network analysis showed enrichment of DE genes in pathways associated with cellular adhesion, oncogenesis and developmental regulation by mammalian AT-hook bearing high mobility group A (HMGA) proteins. Overlap of TashAT2 DE genes with Sahiwal vs Holstein DE genes revealed that a significant number of shared genes were associated with disease susceptibility. Altered protein levels encoded by one of these genes (GULP1) was strongly linked to expression of TashAT2 in BoMac cells and was demonstrated to be higher in infected Holstein leucocytes compared to Sahiwal. We conclude that TashAT2 operates as an HMGA analogue to differentially mould the epigenome of the infected cell and influence disease susceptibility.


Assuntos
Proteínas HMGA , Parasitos , Theileria annulata , Theileriose , Bovinos , Animais , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Fatores de Transcrição/metabolismo , Parasitos/metabolismo , Theileriose/parasitologia , Theileria annulata/genética , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
3.
Elife ; 112022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103595

RESUMO

Schuster et al. make the important observation that small numbers of trypanosomes can infect tsetse flies, and further argue that this can occur whether the infecting parasites are developmentally 'slender' or 'stumpy'(Schuster et al., 2021). We welcome their careful experiments but disagree that they require a rethink of the trypanosome life-cycle. Instead, the study reveals that stumpy forms are more likely to successfully infect flies, the key limit on parasite transmission, and we predict this advantage would be greatly amplified in tsetse infections in the field. Further, we argue that stumpy forms are defined by a suite of molecular adaptations for life-cycle progression, with morphology being a secondary feature. Finally, their dominance in chronic infections means most natural tsetse infections would involve stumpy forms, even in small numbers. Our interpretation does not require re-evaluation of the obligatory life cycle of the parasite, where stumpy forms are selected to sustain transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Adaptação Fisiológica , Animais , Estágios do Ciclo de Vida
4.
PLoS One ; 17(1): e0262051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061738

RESUMO

BACKGROUND: Knowledge of factors that influence the outcome of infection are crucial for determining the risk of severe disease and requires the characterisation of pathogen-host interactions that have evolved to confer variable susceptibility to infection. Cattle infected by Theileria annulata show a wide range in disease severity. Native (Bos indicus) Sahiwal cattle are tolerant to infection, whereas exotic (Bos taurus) Holstein cattle are susceptible to acute disease. METHODOLOGY/PRINCIPAL FINDINGS: We used RNA-seq to assess whether Theileria infected cell lines from Sahiwal cattle display a different transcriptome profile compared to Holstein and screened for altered expression of parasite factors that could generate differences in host cell gene expression. Significant differences (<0.1 FDR) in the expression level of a large number (2211) of bovine genes were identified, with enrichment of genes associated with Type I IFN, cholesterol biosynthesis, oncogenesis and parasite infection. A screen for parasite factors found limited evidence for differential expression. However, the number and location of DNA motifs bound by the TashAT2 factor (TA20095) were found to differ between the genomes of B. indicus vs. B. taurus, and divergent motif patterns were identified in infection-associated genes differentially expressed between Sahiwal and Holstein infected cells. CONCLUSIONS/SIGNIFICANCE: We conclude that divergent pathogen-host molecular interactions that influence chromatin architecture of the infected cell are a major determinant in the generation of gene expression differences linked to disease susceptibility.


Assuntos
Doenças dos Bovinos/genética , Proteínas de Ligação a DNA/química , Proteínas de Helminto/química , Theileria annulata/metabolismo , Theileriose/genética , Transcriptoma , Animais , Sequência de Bases , Carcinogênese/genética , Bovinos , Doenças dos Bovinos/parasitologia , Linhagem Celular , Análise por Conglomerados , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças , Proteínas de Helminto/metabolismo , Imunidade Inata/genética , Interferon Tipo I/genética , Análise de Componente Principal , Theileriose/parasitologia
5.
Sci Rep ; 8(1): 4188, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520067

RESUMO

Artificial infection of mosquitoes with the endosymbiont bacteria Wolbachia can interfere with malaria parasite development. Therefore, the release of Wolbachia-infected mosquitoes has been proposed as a malaria control strategy. However, Wolbachia effects on vector competence are only partly understood, as indicated by inconsistent effects on malaria infection reported under laboratory conditions. Studies of naturally-occurring Wolbachia infections in wild vector populations could be useful to identify the ecological and evolutionary conditions under which these endosymbionts can block malaria transmission. Here we demonstrate the occurrence of natural Wolbachia infections in three species of black fly (genus Simulium), which is a main vector of the avian malaria parasite Leucocytozoon. Prevalence of Leucocytozoon was high (25%), but the nature and magnitude of its association with Wolbachia differed between black fly species. Wolbachia infection was positively associated with avian malaria infection in S. cryophilum, negatively associated in S. aureum, and unrelated in S. vernum. These differences suggest that Wolbachia interacts with the parasite in a vector host species-specific manner. This provides a useful model system for further study of how Wolbachia influences vector competence. Such knowledge, including the possibility of undesirable positive association, is required to guide endosymbiont based control methods.


Assuntos
Haemosporida/fisiologia , Insetos Vetores , Malária Aviária , Infecções por Rickettsiaceae , Simuliidae , Wolbachia/fisiologia , Animais , Aves , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Malária Aviária/epidemiologia , Malária Aviária/microbiologia , Malária Aviária/parasitologia , Malária Aviária/transmissão , Infecções por Rickettsiaceae/epidemiologia , Infecções por Rickettsiaceae/parasitologia , Infecções por Rickettsiaceae/transmissão , Simuliidae/microbiologia , Simuliidae/parasitologia , Especificidade da Espécie
6.
BMC Genomics ; 18(1): 438, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583072

RESUMO

BACKGROUND: Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. RESULTS: A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. CONCLUSIONS: Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.


Assuntos
Antígenos de Protozoários/genética , Biologia Computacional , Vetores de Doenças , Theileria annulata/imunologia , Theileria annulata/fisiologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Simulação por Computador , Sequência Conservada , Epitopos de Linfócito B/imunologia , Variação Genética , Carrapatos/parasitologia , Carrapatos/fisiologia
7.
PLoS One ; 12(3): e0174595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358861

RESUMO

Tick-borne pathogens (TBP) are responsible for significant economic losses to cattle production, globally. This is particularly true in countries like India where TBP constrain rearing of high yielding Bos taurus, as they show susceptibility to acute tick borne disease (TBD), most notably tropical theileriosis caused by Theileria annulata. This has led to a programme of cross breeding Bos taurus (Holstein-Friesian or Jersey) with native Bos indicus (numerous) breeds to generate cattle that are more resistant to disease. However, the cost to fitness of subclinical carrier infection in crossbreeds relative to native breeds is unknown, but could represent a significant hidden economic cost. In this study, a total of 1052 bovine blood samples, together with associated data on host type, sex and body score, were collected from apparently healthy animals in four different agro-climatic zones of Maharashtra state. Samples were screened by PCR for detection of five major TBPs: T. annulata, T. orientalis, B. bigemina, B. bovis and Anaplasma spp.. The results demonstrated that single and co-infection with TBP are common, and although differences in pathogen spp. prevalence across the climatic zones were detected, simplistic regression models predicted that host type, sex and location are all likely to impact on prevalence of TBP. In order to remove issues with autocorrelation between variables, a subset of the dataset was modelled to assess any impact of TBP infection on body score of crossbreed versus native breed cattle (breed type). The model showed significant association between infection with TBP (particularly apicomplexan parasites) and poorer body condition for crossbreed animals. These findings indicate potential cost of TBP carrier infection on crossbreed productivity. Thus, there is a case for development of strategies for targeted breeding to combine productivity traits with disease resistance, or to prevent transmission of TBP in India for economic benefit.


Assuntos
Doenças dos Bovinos/diagnóstico , Theileria annulata/isolamento & purificação , Theileriose/genética , Doenças Transmitidas por Carrapatos/diagnóstico , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/parasitologia , Índia , Reação em Cadeia da Polimerase/métodos , Theileria annulata/genética , Theileria annulata/patogenicidade , Theileriose/diagnóstico , Theileriose/parasitologia , Doenças Transmitidas por Carrapatos/genética , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos/parasitologia
8.
J Anim Ecol ; 83(1): 256-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23926945

RESUMO

Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenotypic variation in host exploitation by the avian malaria parasite Plasmodium relictum. We investigated how the nutritional status of birds altered parasite within-host dynamics and virulence, and how the interaction between past and current environments experienced by the parasite accounts for the variation in the infection dynamics. Experimentally infected canaries were allocated to control or supplemented diets. Plasmodium parasites experiencing the two different environments were subsequently transmitted in a full-factorial design to new hosts reared under similar control or supplemented diets. Food supplementation was effective since supplemented hosts gained body mass during a 15-day period that preceded the infection. Host nutrition had strong effects on infection dynamics and parasite virulence. Overall, parasites were more successful in control nonsupplemented birds, reaching larger population sizes and producing more sexual (transmissible) stages. However, supplemented hosts paid a higher cost of infection, and when keeping parasitaemia constant, they had lower haematocrit than control hosts. Parasites grown on control hosts were better able to exploit the subsequent hosts since they reached higher parasitaemia than parasites originating from supplemented hosts. They were also more virulent since they induced higher mass and haematocrit loss. Our study highlights that parasite virulence can be shaped by the host nutritional status and that parasite can adapt to the environment provided by their hosts, possibly through genetic selection.


Assuntos
Canários , Malária/veterinária , Estado Nutricional/fisiologia , Plasmodium/patogenicidade , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Malária/parasitologia , Parasitemia , Virulência
9.
Exp Parasitol ; 135(4): 708-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24184773

RESUMO

Understanding the different factors that may influence parasite virulence is of fundamental interest to ecologists and evolutionary biologists. It has recently been demonstrated that parasite virulence may occur partly through manipulation of host competitive ability. Differences in competitive ability associated with the social status (dominant or subordinate) of a host may determine the extent of this competition-mediated parasite virulence. We proposed that differences between subordinate and dominant birds in the physiological costs of infection may change depending on the level of competition in social groups. We observed flocks of domestic canaries to determine dominant or subordinate birds, and modified competition by providing restricted (high competition) or ad libitum food (low competition). Entire flocks were then infected with either the avian malaria parasite, Plasmodium relictum or a control. Contrary to our predictions we found that the level of competition had no effect on the outcome of infection for dominant or subordinate birds. We found that dominant birds appeared to suffer greater infection mediated morbidity in both dietary treatments, with a higher and more sustained reduction in haematocrit, and higher parasitaemia, than subordinates. Our results show that dominance status in birds can certainly alter parasite virulence, though the links between food availability, competition, nutrition and virulence are likely to be complex and multifaceted.


Assuntos
Canários/parasitologia , Comportamento Competitivo , Abastecimento de Alimentos , Malária Aviária/fisiopatologia , Plasmodium/patogenicidade , Predomínio Social , Animais , Canários/fisiologia , Comportamento Alimentar , Malária Aviária/mortalidade , Malária Aviária/parasitologia , Masculino , Morbidade , Parasitemia/mortalidade , Parasitemia/fisiopatologia , Parasitemia/veterinária , Virulência
10.
Int J Parasitol ; 43(10): 861-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792297

RESUMO

There is an increasing understanding of the context-dependent nature of parasite virulence. Variation in parasite virulence can occur when infected individuals compete with conspecifics that vary in infection status; virulence may be higher when competing with uninfected competitors. In vertebrates with social hierarchies, we propose that these competition-mediated costs of infection may also vary with social status. Dominant individuals have greater competitive ability than competing subordinates, and consequently may pay a lower prevalence-mediated cost of infection. In this study we investigated whether costs of malarial infection were affected by the occurrence of the parasite in competitors and social status in domestic canaries (Serinus canaria). We predicted that infected subordinates competing with non-infected dominants would pay higher costs than infected subordinates competing with infected dominants. We also predicted that these occurrence-mediated costs of infection would be ameliorated in infected dominant birds. We found that social status and the occurrence of parasites in competitors significantly interacted to change haematocrit in infected birds. Namely, subordinate and dominant infected birds differed in haematocrit depending on the infection status of their competitors. However, in contrast to our prediction, dominants fared better with infected subordinates, whereas subordinates fared better with uninfected dominants. Moreover, we found additional effects of parasite occurrence on mortality in canaries. Ultimately, we provide evidence for costs of parasitism mediated by social rank and the occurrence of parasites in competitors in a vertebrate species. This has important implications for our understanding of the evolutionary processes that shape parasite virulence and group living.


Assuntos
Canários/fisiologia , Canários/parasitologia , Malária Aviária/patologia , Animais , Comportamento Animal , Hematócrito , Relações Interpessoais , Análise de Sobrevida
11.
Exp Parasitol ; 132(4): 417-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23022523

RESUMO

Malaria is a widespread vector-borne disease infecting a wide range of terrestrial vertebrates including reptiles, birds and mammals. In addition to being one of the most deadly infectious diseases for humans, malaria is a threat to wildlife. The host immune system represents the main defence against malaria parasites. Identifying the immune effectors involved in malaria resistance has therefore become a major focus of research. However, this has mostly involved humans and animal models (rodents) and how the immune system regulates malaria progression in non-model organisms has been largely ignored. The aim of the present study was to investigate the role of nitric oxide (NO) as an immune effector contributing to the control of the acute phase of infection with the avian malaria agent Plasmodium relictum. We used experimental infections of domestic canaries in conjunction with the inhibition of the enzyme inducible nitric oxide synthase (iNOS) to assess the protective function of NO during the infection, and the physiological costs paid by the host in the absence of an effective NO response. Our results show that birds treated with the iNOS inhibitor suffered from a higher parasitaemia, but did not pay a higher cost of infection (anaemia). While these findings confirm that NO contributes to the resistance to avian malaria during the acute phase of the infection, they also suggest that parasitaemia and costs of infection can be decoupled.


Assuntos
Canários/parasitologia , Malária Aviária/metabolismo , Óxido Nítrico/antagonistas & inibidores , Parasitemia/metabolismo , Pardais/parasitologia , Animais , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Malária Aviária/sangue , Malária Aviária/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Parasitemia/imunologia , Parasitemia/parasitologia , Plasmodium/imunologia , Plasmodium/metabolismo
12.
J Exp Biol ; 214(Pt 10): 1732-9, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525320

RESUMO

Where behavioural responses differ consistently between individuals, this is termed 'personality'. There is the suggestion, but with little supporting data, that personality traits reflect underlying variation in physiology. Here, we tested whether greenfinches Carduelis chloris differing in personality traits differed in various plasma indices of oxidative profile: antioxidant capacity (OXY), pro-oxidant status (reactive oxygen metabolites, ROMs), oxidative stress (OS) and an end-product of oxidative damage: malondialdehyde (MDA). We measured two personality traits: neophobia (latency to approach food near novel objects) and object exploration (latency to approach novel objects). These traits were uncorrelated. ROMs, OXY, OS and MDA were also uncorrelated with each other. Highly neophobic birds had lower OXY, higher ROMs and higher OS than less neophobic birds. Fast exploring birds had higher OXY than slow explorers, but did not differ in ROMs or OS. Variation in MDA was described by a quadratic relationship with neophobia: birds with extremely high or low neophobia had lower MDA than birds with intermediate neophobia, despite highly neophobic birds exhibiting lower OS than intermediately neophobic birds. Additively in that model, fast explorers had lower MDA than slower explorers. To conclude: first, personality types can differ in oxidative profile. Second, although physiological differences (e.g. hormonal stress responsiveness) between personality types generally range along a linear continuum, physiological costs may not. Finally, relationships with oxidative profile differed between neophobia and object exploration. Understanding how oxidative profile and thus physiological costs vary within and between personality traits may explain how differences in personality traits can predict fitness.


Assuntos
Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Tentilhões/fisiologia , Estresse Oxidativo/fisiologia , Personalidade/fisiologia , Análise de Variância , Animais , Antioxidantes/metabolismo , Feminino , Modelos Lineares , Masculino , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Naturwissenschaften ; 97(10): 903-13, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20838757

RESUMO

Carotenoid pigments are responsible for many of the red, yellow and orange plumage and integument traits seen in birds. One idea suggests that since carotenoids can act as antioxidants, carotenoid-mediated colouration may reveal an individual's ability to resist oxidative damage. In fact, there is currently very little information on the effects of most dietary-acquired antioxidants on oxidative stress in wild birds. Here, we assessed the impacts on oxidative damage, plasma antioxidants, growth and plumage colouration after supplementing nestling blue tits Cyanistes caeruleus with one of three diets; control, carotenoid treatment or α-tocopherol treatment. Oxidative damage was assessed by HPLC analysis of plasma levels of malondialdehyde (MDA), a by-product of lipid peroxidation. Contrary to predictions, we found no differences in oxidative damage, plumage colouration or growth rate between treatment groups. Although plasma lutein concentrations were significantly raised in carotenoid-fed chicks, α-tocopherol treatment had no effect on concentrations of plasma α-tocopherol compared with controls. Interestingly, we found that faster growing chicks had higher levels of oxidative damage than slower growing birds, independent of treatment, body mass and condition at fledging. Moreover, the chromatic signal of the chest plumage of birds was positively correlated with levels of MDA but not plasma antioxidant concentrations: more colourful nestlings had higher oxidative damage than less colourful individuals. Thus, increased carotenoid-mediated plumage does not reveal resistance to oxidative damage for nestling blue tits, but may indicate costs paid, in terms of oxidative damage. Our results indicate that the trade-offs between competing physiological systems for dietary antioxidants are likely to be complex in rapidly developing birds. Moreover, interpreting the biological relevance of different biomarkers of antioxidant status represents a challenge for evolutionary ecology.


Assuntos
Antioxidantes/metabolismo , Peroxidação de Lipídeos , Passeriformes/fisiologia , Ração Animal , Animais , Animais Selvagens/fisiologia , Carotenoides/metabolismo , Cor , Plumas , Malondialdeído/metabolismo , Estresse Oxidativo , Passeriformes/crescimento & desenvolvimento , Passeriformes/imunologia , Passeriformes/metabolismo , Análise para Determinação do Sexo
14.
J Agric Food Chem ; 58(7): 3910-5, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20014766

RESUMO

Anthocyanins in extracts from raspberries and blueberries were analyzed by reversed-phase HPLC coupled to a high-resolution Exactive Orbitrap mass spectrometer (HR-MS) with a resolution of 100,000, operated with an electrospray source in the positive ionization mode. As consumption of anthocyanin-rich berry extracts has been associated with improved cognitive function, brain extracts from European greenfinches ( Carduelis chloris ) that had been fed one blackberry daily for a period of 2 weeks were analyzed by both HPLC with traditional tandem MS in the selected reaction monitoring mode and HPLC-HR-MS. Cyanidin-3-O-glucoside was detected in the brain extracts by both methods, but because of its high level of selectivity, HR-MS was ca. 200-fold more sensitive. A further advantage of HR-MS is that unlike MS-SRM it enables both targeted and nontargeted compounds to be detected and much lower limits of detection are achieved without compromising the selectivity of the analysis.


Assuntos
Antocianinas/análise , Aves/fisiologia , Química Encefálica , Frutas/química , Espectrometria de Massas/métodos , Extratos Vegetais/análise , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...