Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(42): 17418-17430, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28860192

RESUMO

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.


Assuntos
Celulose 1,4-beta-Celobiosidase , Proteínas Fúngicas , Temperatura Alta , Hypocrea , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Cristalografia por Raios X , Evolução Molecular Direcionada , Estabilidade Enzimática/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hypocrea/enzimologia , Hypocrea/genética , Simulação de Dinâmica Molecular , Domínios Proteicos
2.
Acta Crystallogr D Struct Biol ; 72(Pt 7): 860-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27377383

RESUMO

The filamentous fungus Hypocrea jecorina produces a number of cellulases and hemicellulases that act in a concerted fashion on biomass and degrade it into monomeric or oligomeric sugars. ß-Glucosidases are involved in the last step of the degradation of cellulosic biomass and hydrolyse the ß-glycosidic linkage between two adjacent molecules in dimers and oligomers of glucose. In this study, it is shown that substituting the ß-glucosidase from H. jecorina (HjCel3A) with the ß-glucosidase Cel3A from the thermophilic fungus Rasamsonia emersonii (ReCel3A) in enzyme mixtures results in increased efficiency in the saccharification of lignocellulosic materials. Biochemical characterization of ReCel3A, heterologously produced in H. jecorina, reveals a preference for disaccharide substrates over longer gluco-oligosaccharides. Crystallographic studies of ReCel3A revealed a highly N-glycosylated three-domain dimeric protein, as has been observed previously for glycoside hydrolase family 3 ß-glucosidases. The increased thermal stability and saccharification yield and the superior biochemical characteristics of ReCel3A compared with HjCel3A and mixtures containing HjCel3A make ReCel3A an excellent candidate for addition to enzyme mixtures designed to operate at higher temperatures.


Assuntos
Eurotiales/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Cristalografia por Raios X , Eurotiales/química , Eurotiales/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosilação , Hidrólise , Hypocrea/química , Hypocrea/enzimologia , Hypocrea/metabolismo , Lignina/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
3.
Bioconjug Chem ; 14(3): 517-25, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12757374

RESUMO

A method for thermally induced switching of enzyme activity has been developed, based on the site-directed conjugation of end-reactive temperature-responsive polymers to a unique cysteine (Cys) residue positioned near the enzyme active site. The reversible temperature-induced collapse of N,N-dimethylacrylamide (DMA)/N-4-phenylazo-phenylacrylamide (AZAAm) copolymers (DMAAm) has been used as a molecular switch to control the catalytic activity of endoglucanase 12A (EG 12A). The polymer was conjugated to the EG 12A site-directed mutant N55C, directly adjacent to the cellulose binding cleft, and to the S25C mutant, where the conjugation site is more distant. The N55C conjugate displayed a larger activity shutoff efficiency in the collapsed polymer state than the S25C conjugate. Increasing the polymer molecular weight was also shown to increase the shutoff efficiency of the switch. Related to these effects of conjugation site and polymer size, the switching efficiency was found to be strongly dependent on substrate size. With a small substrate, o-nitrophenyl-beta-d-cellobioside (ONPC), there was minimal blocking of enzyme activity when the polymer was in the expanded state. With a large substrate, hydroxyethyl cellulose (HEC), there was a large reduction of enzyme activity in the polymer expanded state, even with relatively small polymer chains, and a further reduction when the polymer was collapsed. Similar general trends for the interactive effects of conjugation site, polymer size, and substrate size were observed for immobilized conjugates. Kinetic studies demonstrated that the switching activity was due to the blocking of substrate association by the collapsed polymers. These investigations provide mechanistic insight that can be utilized to design molecular switches for a variety of stimuli-responsive polymer-protein conjugates.


Assuntos
Enzimas/metabolismo , Polímeros/metabolismo , Temperatura , Catálise , Enzimas/síntese química , Modelos Moleculares , Polímeros/síntese química
4.
Proc Natl Acad Sci U S A ; 99(26): 16592-6, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12486222

RESUMO

The ability to photoregulate enzyme activities could provide important new opportunities for development of diagnostic assays, sequential bioprocessing, and lab assays in both traditional and microfluidic formats. We show here that the photoinduced changes in the size and hydration of a "smart" polymer chain coil can be used to regulate substrate access and enzyme activity when conjugated to the enzyme at a specific point just outside the active site. The photoresponsive polymers thus serve jointly as antennae and actuators that reversibly respond to distinct optical signals to switch the polymer-enzyme conjugates on and off, and work when the conjugate is free in solution or when immobilized on magnetic beads.


Assuntos
Acrilatos/química , Compostos Azo/química , Celulase/química , Polímeros/química , Acrilamidas/química , Acrilamidas/metabolismo , Acrilatos/metabolismo , Compostos Azo/metabolismo , Celulase/metabolismo , Cinética , Luz , Modelos Moleculares , Polímeros/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...