Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(46): 22635-22645, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38357685

RESUMO

Noble metal nanostructures can efficiently harvest electromagnetic radiation, which, in turn, is used to generate localized surface plasmon resonances. Surface plasmons decay, producing hot carriers, that is, short-lived species that can trigger chemical reactions on metallic surfaces. However, noble metal nanostructures catalyze only a very small number of chemical reactions. This limitation can be overcome by coupling such nanostructures with catalytic-active metals. Although the role of such catalytically active metals in plasmon-driven catalysis is well-understood, the mechanistics of a noble metal antenna in such chemistry remains unclear. In this study, we utilize tip-enhanced Raman spectroscopy, an innovative nanoscale imaging technique, to investigate the rates and yields of plasmon-driven reactions on mono- and bimetallic gold- and silver-based nanostructures. We found that silver nanoplates (AgNPs) demonstrate a significantly higher yield of 4-nitrobenzenehtiol to p,p'-dimercaptoazobisbenzene (DMAB) reduction than gold nanoplates (AuNPs). We also observed substantially greater yields of DMAB on silver-platinum and silver-palladium nanoplates (Ag@PtNPs and Ag@PdNPs) compared to their gold analogues, Au@PtNPs and Au@PdNPs. Furthermore, Ag@PtNPs exhibited enhanced reactivity in 4-mercatophenylmethanol to 4-mercaptobenzoic acid oxidation compared to Au@PtNPs. These results showed that silver-based bimetallic nanostructures feature much greater reactivity compared to their gold-based analogues.

2.
J Adv Res ; 41: 23-38, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328751

RESUMO

INTRODUCTION: The advanced features of plasmonic nanomaterials enable initial high accuracy detection with different therapeutic intervention. Computational simulations could estimate the plasmonic heat generation with a high accuracy and could be reliably compared to experimental results. This proposed combined theoretical-experimental strategy may help researchers to better understand other nanoparticles in terms of plasmonic efficiency and usability for future nano-theranostic research. OBJECTIVES: To develop innovative computationally-driven approach to quantify any plasmonic nanoparticles photothermal efficiency and effects before their use as therapeutic agents. METHODS: This report introduces drug free plasmonic silver triangular nanoprisms coated with polyvinyl alcohol biopolymer (PVA-SNT), for in vivo photoacoustic imaging (PAI) guided photothermal treatment (PTT) of triple-negative breast cancer mouse models. The synthesized PVA-SNT nanoparticles were characterized and a computational electrodynamic analysis was performed to evaluate and predict the optical and plasmonic photothermal properties. The in vitro biocompatibility and in vivo tumor abalation study was performed with MDA-MB-231 human breast cancer cell line and in nude mice model. RESULTS: The drug free 140 µg∙mL-1 PVA-SNT nanoparticles with 1.0 W∙cm-2 laser irradiation for 7 min proved to be an effective and optimized theranostic approach in terms of PAI guided triple negative breast cancer treatment. The PVA-SNT nanoparticles exhibits excellent biosafety, photostability, and strong efficiency as PAI contrast agent to visualize tumors. Histological analysis and fluorescence-assisted cell shorter assay results post-treatment apoptotic cells, more importantly, it shows substantial damage to in vivo tumor tissues, killing almost all affected cells, with no recurrence. CONCLUSION: This is a first complete study on computational simulations to estimate the plasmonic heat generation followed by drug free plasmonic PAI guided PTT for cancer treatment. This computationally-driven theranostic approach demonstrates an innovative thought regarding the nanoparticles shape, size, concentration, and composition which could be useful for the prediction of photothermal heat generation in precise nanomedicine applications.


Assuntos
Hipertermia Induzida , Neoplasias , Técnicas Fotoacústicas , Animais , Humanos , Camundongos , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Prata/uso terapêutico , Técnicas Fotoacústicas/métodos , Terapia Fototérmica , Hipertermia Induzida/métodos , Camundongos Nus , Neoplasias/tratamento farmacológico
3.
Nanoscale Adv ; 4(21): 4589-4596, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341288

RESUMO

Computational modeling of plasmonic periodic structures are challenging due to their multiscale nature. On one hand, nanoscale building blocks require very fine spatial discretization of the computation domain to describe the near-field nature of the localized surface plasmons. On the other hand, the microscale supercrystals require large simulation domains. To tackle this challenge, two approaches are generally taken: (i) an effective medium approach, neglecting the nanoscale effects and (ii) the use of a unit cell with periodic boundary conditions, neglecting the overall habit of the supercrystal. The latter, which is used to calculate the photonic band structure of these supercrystals, fails to describe the photonic properties arising from their finite-size such as Fabry-Pérot modes (FPMs), whispering gallery modes (WGMs), and decrease of the photonic mode lifetime. Here, we developed a computational approach, based on the finite-difference time-domain method to accurately calculate the photonic band structures of finite supercrystals. We applied this new approach to 3D periodic microstructures of Au nanoparticles with cubic, spherical, and rhombic dodecahedral habits and discuss how their photonic band structures differ from those of infinite structures. Finally, we compared the photonic band structures to reflectance spectra and describe phenomena such as FPMs, WGMs, and polaritonic bandgaps.

4.
J Phys Chem C Nanomater Interfaces ; 124(31): 17172-17182, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34367407

RESUMO

Induced hyperthermia has been demonstrated as an effective oncological treatment due to the reduced heat tolerance of most malignant tissues; however, most techniques for heat generation within a target volume are insufficiently selective, inducing heating and unintended damage to surrounding healthy tissues. Plasmonic photothermal therapy (PPTT) utilizes light in the near-infrared (NIR) region to induce highly localized heating in gold nanoparticles, acting as exogenous chromophores, while minimizing heat generation in nearby tissues. However, optimization of treatment parameters requires extensive in vitro and in vivo studies for each new type of pathology and tissue targeted for treatment, a process that can be substantially reduced by implementing computational modeling. Herein, we describe the development of an innovative model based on the finite element method (FEM) that unites photothermal heating physics at the nanoscale with the micron scale to predict the heat generation of both single and arrays of gold nanoparticles. Plasmonic heating from laser illumination is computed for gold nanoparticles with three different morphologies: nanobipyramids, nanorods, and nanospheres. Model predictions based on laser illumination of nanorods at a visible wavelength (655 nm) are validated through experiments, which demonstrate a temperature increase of 5 °C in the viscinity of the nanorod array when illuminated by a 150 mW red laser. We also present a predictive model of the heating effect induced at 810 nm, wherein the heating efficiencies of the various morphologies sharing this excitation peak are compared. Our model shows that the nanorod is the most effective at heat generation in the isolated scenario, and arrays of 91 nm long nanorods reached hyperthermic levels (an increase of at least 5 °C) within a volume of over 20 µm3.

5.
ACS Nano ; 13(9): 10113-10128, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31419107

RESUMO

Growth of anisotropic nanostructures enables the manipulation of optical properties across the electromagnetic spectrum by fine morphological tuning of the nanoparticles. Among them, stellated metallic nanostructures present enhanced properties owing to their complex shape, and hence, the control over the final morphology becomes of great importance. Herein, a seed-mediated method for the high-yield production of goldrich-copper concave branched nanostructures and their structural and optical characterization is reported. The synthesis protocol enabled excellent control and tunability of the final morphology, from concave pentagonal nanoparticles to five-fold branched nanoparticles, named "nanostars". The anisotropic shape was achieved via kinetic control over the synthesis conditions by selective passivation of facets using a capping agent and assisted by the presence of copper chloride ions, both having a crucial impact over the final structure. Optical extinction measurements of nanostars in solution indicated a broad spectral response, hiding the properties of the individual nanostars. Hence, single-particle scattering measurements of individual concave pentagonal nanoparticles and concave nanostars were performed to determine the origin of the multiple plasmon bands by correlation with their morphological features, following their growth evolution. Finite-difference time-domain calculations delivered insights into the geometry-dependent plasmonic properties of concave nanostars and their packed aggregates. Our results uncover the intrinsic scattering properties of individual nanostars and the origin of the broad spectral response, which is mostly due to z-direction packed aggregates.

6.
Nanotechnology ; 30(16): 165101, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654336

RESUMO

Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.


Assuntos
Antozoários/metabolismo , Proteínas Luminescentes/química , Nanocompostos/química , Prata/química , Animais , Dessecação , Nanopartículas Metálicas/química , Modelos Moleculares , Conformação Proteica , Análise Espectral Raman , Propriedades de Superfície , Proteína Vermelha Fluorescente
7.
Opt Express ; 26(22): 29411-29423, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470105

RESUMO

We report on the surface enhanced resonant Raman scattering (SERRS) in hybrid MoSe2@Au plasmonic-excitonic nanostructures, focusing on the situation where the localized surface plasmon resonance of Au nanodisks is finely tuned to the exciton absorption of monolayer MoSe2. Using a resonant excitation, we investigate the SERRS in MoSe2@Au and the resonant Raman scattering (RRS) in a MoSe2@SiO2 reference. Both optical responses are compared to the non-resonant Raman scattering signal, thus providing an estimate of the relative contributions from the localized surface plasmons and the confined excitons to the Raman scattering enhancement. We determine a SERRS/RRS enhancement factor exceeding one order of magnitude. Furthermore, using numerical simulations, we explore the optical near-field properties of the hybrid MoSe2@Au nanostructure and investigate the SERRS efficiency dependence on the nanodisk surface morphology and on the excitation wavelength. We demonstrate that a photothermal effect, due to the resonant plasmonic pumping of electron-hole pairs into the MoSe2 layer, and the surface roughness of the metallic nanostructures are the main limiting factors of the SERRS efficiency.

8.
Nano Lett ; 16(11): 6939-6945, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704845

RESUMO

The internal structure of hollow AgAu nanorods created by partial galvanic replacement was manipulated reversibly, and its effect on optical properties was mapped with nanometer resolution. Using the electron beam in a scanning transmission electron microscope to create solvated electrons and reactive radicals in an encapsulated solution-filled cavity in the nanorods, Ag ions were reduced nearby the electron beam, reshaping the core of the nanoparticles without affecting the external shape. The changes in plasmon-induced near-field properties were then mapped with electron energy-loss spectroscopy without disturbing the internal structure, and the results are supported by finite-difference time-domain calculations. This reversible shape and near-field control in a hollow nanoparticle actuated by an external stimulus introduces possibilities for applications in reprogrammable sensors, responsive materials, and optical memory units. Moreover, the liquid-filled nanorod cavity offers new opportunities for in situ microscopy of chemical reactions.

9.
Nano Lett ; 16(7): 4251-9, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27243108

RESUMO

We present a high-resolution distance dependence study of surface-enhanced Raman scattering (SERS) enabled by atomic layer deposition (ALD) at 55 and 100 °C. ALD is used to deposit monolayers of Al2O3 on bare silver film over nanospheres (AgFONs) and AgFONs functionalized with self-assembled monolayers. Operando SERS is used to measure the intensities of the Al-CH3 and C-H stretches from trimethylaluminum (TMA) as a function of distance from the AgFON surface. This study clearly demonstrates that SERS on AgFON substrates displays both a short- and long-range nanometer scale distance dependence. Excellent agreement is obtained between these experiments and theory that incorporates both short-range and long-range terms. This is a high-resolution operando SERS distance dependence study performed in one integrated experiment using ALD Al2O3 as the spacer layer and Raman label simultaneously. The long-range SERS distance dependence should make it possible to detect chemisorbed surface species located as far as ∼3 nm from the AgFON substrate and will provide new insight into the surface chemistry of ALD and catalytic reactions.

10.
ACS Nano ; 10(5): 5362-73, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27148792

RESUMO

Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism.

11.
Analyst ; 141(5): 1779-88, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26858996

RESUMO

Simplicity and low cost has positioned inkjet paper- and fabric-based 3D substrates as two of the most commonly used surface-enhanced Raman spectroscopy (SERS) platforms for the detection and the identification of chemical and biological analytes down to the nanogram and femtogram levels. The relationship between far-field and near-field properties of these 3D SERS platforms remains poorly understood and warrants more detailed characterization. Here, we investigate the extremely weak optical scattering observed from commercial and home-fabricated paper-, as well as fabric-based 3D SERS substrates. Using wavelength scanned surface-enhanced Raman excitation spectroscopy (WS-SERES) and finite-difference time-domain (FDTD) calculations we were able to determine their near-field SERS properties and correlate them with morphological and far-field properties. It was found that nanoparticle dimers, trimers, and higher order nanoparticle clusters primarily determine the near-field properties of these substrates. At the same time, the far-field response of 3D SERS substrates either originates primarily from the monomers or cannot be clearly defined. Using FDTD we demonstrate that LSPR bands of nanoparticle aggregates near perfectly overlap with the maxima of the near-field surface-enhanced Raman scattering responses of the 3D SERS substrates. This behaviour of far-field spectroscopic properties and near-field surface-enhanced Raman scattering has not been previously observed for 2D SERS substrates, known as nanorod arrays. The combination of these analytical approaches provides a full spectroscopic characterization of 3D SERS substrates, while FDTD simulation can be used to design new 3D SERS substrates with tailored spectral characteristics.

12.
Small ; 12(3): 330-42, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26583756

RESUMO

Shape-controlled synthesis of gold nanoparticles generally involves the use of surfactants, typically cetyltrimethylammonium (CTAX, X = Cl(-) , Br(-)), to regulate the nucleation growth process and to obtain colloidally stable nanoparticles. The surfactants adsorb on the nanoparticle surface making further functionalization difficult and therefore limit their use in many applications. Herein, the influence of CTAX on nanoparticle sensitivity to local dielectric environment changes is reported. It is shown, both experimentally and theoretically, that the CTAX bilayer significantly reduces the refractive index (RI) sensitivity of anisotropic gold nanoparticles such as nanocubes and concave nanocubes, nanorods, and nanoprisms. The RI sensitivity can be increased by up to 40% by removing the surfactant layer from nanoparticles immobilized on a solid substrate using oxygen plasma treatment. This increase compensates for the otherwise problematic decrease in RI sensitivity caused by the substrate effect. Moreover, the removal of the surfactants both facilitates nanoparticle biofunctionalization and significantly improves their catalytic properties. The strategy presented herein is a simple yet effective universal method for enhancing the RI sensitivity of CTAX-stabilized gold nanoparticles and increasing their potential as transducers in nanoplasmonic sensors, as well as in catalytic and biomedical applications.

13.
ACS Nano ; 9(9): 9331-9, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26202803

RESUMO

Fabrication of high-density plasmonic dimers on a large (wafer) scale is crucial for applications in surface-enhanced spectroscopy, bio- and molecular sensing, and optoelectronics. Here, we present an experimental approach based on nanoimprint lithography and shadow evaporation that allows for the fabrication of high-density, large-scale homo- (Au-Au and Ag-Ag) and hetero- (Au-Ag) dimer substrates with precise and consistent sub-10-nm gaps. We performed scanning electron, scanning transmission electron, and atomic force microscopy studies along with a complete electron energy-loss spectroscopy (EELS) characterization. We observed distinct plasmonic modes on these dimers, which are well interpreted by finite-difference time-domain (FDTD) and plasmon hybridization calculations.


Assuntos
Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanopartículas Metálicas/química , Nanoestruturas/química
14.
Nano Lett ; 15(2): 1324-30, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25565116

RESUMO

In a standing wave optical cavity, the coupling of cavity modes, for example, through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, modal instabilities, even complex chaotic behavior. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape.

15.
ACS Appl Mater Interfaces ; 6(19): 17255-67, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25222940

RESUMO

We demonstrate that Au nanoparticles with tipped surface structures, such as concave nanocubes, nanotrisoctahedra, and nanostars, possess size-dependent tunable plasmon resonances and intense near-field enhancements exploitable for single-particle surface-enhanced Raman spectroscopy (spSERS) under near-infrared excitation. We report a robust seed-mediated growth method for the selective fabrication of Au concave nanocubes, nanotrisoctahedra, and nanostars with fine-controlled particle sizes and narrow size distributions. Through tight control over particle sizes, the plasmon resonances of the nanoparticles can be fine-tuned over a broad spectral range with respect to the excitation laser, allowing us to systematically quantify the SERS enhancements on individual nanoparticles as a function of particle size for each particle geometry. Understanding of the geometry-dependent plasmonic characteristics and SERS activities of the nanoparticles is further enhanced by finite-difference time-domain (FDTD) calculations. Our results clearly show that strong SERS enhancements can be obtained and further optimized on individual Au nanoparticles with nanoengineered "hot spots" on their tipped surfaces when the plasmon resonances of the nanoparticles are tuned to the optimal spectral regions with respect to the excitation laser wavelength. Using tunable plasmonic nanoparticles with tipped surface structures as substrates for spSERS represents a highly promising and feasible approach to the optimization of SERS-based sensing and imaging applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Coloides/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
16.
Nano Lett ; 14(6): 3674-82, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24842375

RESUMO

Noble metal nanoparticles have been of tremendous interest due to their intriguing size- and shape-dependent plasmonic and catalytic properties. Combining tunable plasmon resonances with superior catalytic activities on the same metallic nanoparticle, however, has long been challenging because nanoplasmonics and nanocatalysis typically require nanoparticles in two drastically different size regimes. Here, we demonstrate that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, we have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high-index facets abundant on the particle surfaces. The nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time-resolved plasmon-enhanced spectroscopic measurements.

17.
J Am Chem Soc ; 136(1): 64-7, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24354540

RESUMO

Hot-electron-induced photodissociation of H2 was demonstrated on small Au nanoparticles (AuNPs) supported on SiO2. The rate of dissociation of H2 was found to be almost 2 orders of magnitude higher than that observed on equivalently prepared AuNPs on TiO2. The rate of H2 dissociation was found to be linearly dependent on illumination intensity with a wavelength dependence resembling the absorption spectrum of the plasmon of the AuNPs. This result provides strong additional support for the hot-electron-induced mechanism for H2 dissociation in this photocatalytic system.

18.
J Phys Chem Lett ; 5(2): 370-4, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26270713

RESUMO

Porous Au nanoparticles with fine-controlled overall particle sizes have been fabricated using a kinetically controlled seed-mediated growth method. In contrast to spherical Au nanoparticles with smooth surfaces, the porous Au nanoparticles exhibit far greater size-dependent plasmonic tunability and significantly intensified local electric field enhancements exploitable for single-particle plasmon-enhanced spectroscopies. The effects of the nanoscale porosity on the far- and near-field optical properties of the nanoparticles have been investigated both experimentally by optical extinction and single-nanoparticle Raman spectroscopic measurements and theoretically through finite-difference time-domain calculations.

19.
Nano Lett ; 13(12): 5997-6001, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205911

RESUMO

The light scattering properties of hemispherical resonant nanoantennas can be used to redirect normal incidence light to propagate within a thin film or thin film-based device, such as a solar cell, for enhanced efficiency. While planar nanoantennas are typically fabricated as simple nanoparticles or nanostructures in the film plane, here we show that a hemispherical nanoantenna with its symmetry axis tilted out of the plane accomplishes this task with far greater efficacy. The amount of light scattered into an underlying dielectric by the electric and magnetic dipole response of oriented nanocups can be more than three times that achieved using symmetric antenna structures.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Energia Solar , Luz , Nanotecnologia , Ressonância de Plasmônio de Superfície
20.
Nanotechnology ; 24(40): 405704, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24029251

RESUMO

We performed cathodoluminescence (CL) spectroscopy and imaging in a high-resolution scanning electron microscope to locally and selectively excite and investigate the plasmonic properties of a multi-branched gold nanostar on a silicon substrate. This method allows us to map the local density of optical states from the nanostar with a spatial resolution down to a few nanometers. We resolve, both in the spatial and spectral domain, different plasmon modes associated with the nanostar. Finite-difference time-domain (FDTD) numerical simulations are performed to support the experimental observations. We investigate the effect of the substrate on the plasmonic properties of these complex-shaped nanostars. The powerful CL-FDTD combination helps us to understand the effect of the substrate on the plasmonic response of branched nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...