Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(13): 2874-2888, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32265223

RESUMO

Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression. At the genome level, p50 NF-κB promoted binding of STAT1 to regulatory regions of selected IFNγ-dependent genes, including inducible nitric oxide synthase (Nos2). In agreement, ablation of p50 as well as pharmacologic inhibition of either the PGE2 receptor EP2 or NO production reprogrammed M-MDSCs toward a NOS2low/TNFαhigh phenotype, restoring the in vivo antitumor activity of IFNγ. Our results indicate that inhibition of the PGE2/p50/NO axis prevents MDSC-suppressive functions and restores the efficacy of anticancer immunotherapy. SIGNIFICANCE: Tumor-derived PGE2-mediated induction of nuclear p50 NF-κB epigenetically reprograms the response of monocytic cells to IFNγ toward an immunosuppressive phenotype, thus retrieving the anticancer properties of IFNγ. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2874/F1.large.jpg.


Assuntos
Diferenciação Celular , Neoplasias Colorretais/patologia , Dinoprostona/farmacologia , Monócitos/patologia , Células Supressoras Mieloides/patologia , Subunidade p50 de NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Humanos , Tolerância Imunológica , Interferon gama/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Subunidade p50 de NF-kappa B/genética , Óxido Nítrico/metabolismo , Ocitócicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas
2.
Eur J Immunol ; 49(1): 96-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431161

RESUMO

Whether human IL-10-producing regulatory T cells ("Tr1") represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4+ T-cell subsets, including conventional cytotoxic CD4+ T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4+ T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes+ GzmK+ T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4+ Eomes+ T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes+ Tr1-like cells are effector cells of a unique GzmK-expressing CD4+ T-cell subset.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Doenças Inflamatórias Intestinais/imunologia , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Regulação da Expressão Gênica , Granzimas/metabolismo , Humanos , Memória Imunológica , Interferon gama/metabolismo , Interleucina-10/metabolismo , Camundongos , Proteínas com Domínio T/genética
3.
Clin Exp Rheumatol ; 36(4): 643-647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29533753

RESUMO

OBJECTIVES: B cells play an important role in the initiation and progression of systemic lupus erythematosus (SLE). Accordingly, B cell-targeted therapy has been suggested as a new rational approach for treating lupus. Belimumab, a human monoclonal antibody directed against B lymphocyte stimulator (BLyS), was reported as the first biological treatment effective in reducing mild-to-moderate SLE disease activity by using different scoring systems and endpoints. Conversely clinical trials with rituximab, a chimeric monoclonal antibody directed against the CD20 expressed by B cells, have failed to achieve primary endpoints in spite of a number of reports showing its beneficial effects. Anecdotal reports have described the sequential use of rituximab and belimumab as a more effective treatment than using the individual drugs alone, without compromising safety. METHODS: We report a case series of three patients with active SLE refractory to conventional therapies, who underwent treatment with rituximab followed by belimumab as maintenance therapy. RESULTS: We observed a beneficial effect after sequential treatment with rituximab and belimumab. All patients achieved long-standing remission and could reduce or discontinue corticosteroids. Concomitantly, after rituximab administration we observed a rise in BLyS levels, which were dramatically reduced after belimumab introduction. CONCLUSIONS: The modulation of plasma BLyS kinetics in patients undergoing sequential treatment with rituximab and belimumab may represent a possible rationale behind the effectiveness of this combined therapy.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Rituximab/administração & dosagem , Adulto , Fator Ativador de Células B/sangue , Quimioterapia Combinada , Feminino , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Pessoa de Meia-Idade
4.
J Allergy Clin Immunol ; 142(5): 1537-1547.e8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29369775

RESUMO

BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.


Assuntos
Citocinas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores CCR5/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Animais , Células Cultivadas , Neoplasias do Colo/imunologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Adulto Jovem
5.
Arthritis Res Ther ; 19(1): 103, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526072

RESUMO

BACKGROUND: The aim was to investigate CD4+T-cell subsets, immune cells and their cytokine profiles in blood and synovial compartments in rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) to define specific immune signatures. METHODS: Peripheral blood, synovial fluid (SF) and synovial membranes (SM) of RA and OA patients were analyzed. CD4+T-cell subset frequencies were determined by flow cytometry, and cytokine concentrations in serum and SF were measured by ELISA. RESULTS: In peripheral blood, OA patients had altered frequencies of regulatory T-cell subsets, and higher frequencies of Th17 and of Th1/17 cells than RA patients. In the synovial compartment of OA patients, conventional Th17 cells were largely excluded, while Th1/17 cells were enriched and more frequent than in RA patients. Conversely, in the synovial compartment of RA patients, regulatory T cells and Tfh cells were enriched and more frequent then in OA patients. IL-17 and Blys were increased both in serum and SF of RA patients, and correlated with autoantibodies and disease activity. Notably, Blys levels were already significantly elevated in RA patients with low disease activity score in 28 joints (DAS28) and without autoantibody positivity. CONCLUSIONS: Although patients with inflammatory OA have immune activation in the synovial compartment, they display different T-cell subset frequencies and cytokine profiles. Soluble mediators such as Blys might help to discriminate mild clinical forms of RA from inflammatory OA particularly at the onset of the disease.


Assuntos
Artrite Reumatoide/diagnóstico , Linfócitos T CD4-Positivos/imunologia , Osteoartrite/diagnóstico , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Artrite Reumatoide/imunologia , Biomarcadores/análise , Citocinas/análise , Citocinas/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/imunologia , Líquido Sinovial/imunologia , Membrana Sinovial/imunologia
6.
Methods Mol Biol ; 1584: 355-368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255712

RESUMO

In T lymphocytes, the immune synapse is an active zone of vesicular traffic. Directional transport of vesicular receptors and signaling molecules from or to the immune synapse has been shown to play an important role in T-cell receptor (TCR) signal transduction. However, how vesicular trafficking is regulating the activation of T cells is still a burning question, and the characterization of these intracellular compartments remains the first step to understand this process. We describe herein a protocol, which combines a separation of membranes on flotation gradient with an affinity purification of Strep-tagged fusion transmembrane proteins with Strep-Tactin® resin, allowing the purification of membranes containing the Strep-tagged molecule of interest. By keeping the membranes intact, this protocol leads to the purification of molecules physically associated with the Strep-tagged protein as well as of molecules present in the same membrane compartment: transmembrane proteins, proteins strongly associated with the membranes, and luminal proteins. The example shown herein is the purification of membrane compartment prepared from T lymphocytes expressing LAT fused to a Strep-tag.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Membrana Celular/química , Cromatografia de Afinidade/métodos , Ativação Linfocitária , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Linfócitos T/química , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Membrana Celular/imunologia , Humanos , Células Jurkat , Proteínas de Membrana/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
7.
Stem Cells ; 35(4): 1093-1105, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28164431

RESUMO

Mesenchymal stem cells (MSC) are multipotent cells able to differentiate into several cell types, hence providing cell reservoirs for therapeutic applications. The absence of detectable MSC homing at injury sites suggests that paracrine functions could, at least in part, be mediated by extracellular vesicles (EVs); EVs are newly identified players that are studied mainly as predictive or diagnostic biomarkers. Together with their clinical interests, EVs have recently come to the fore for their role in cell-to-cell communication. In this context, we investigated gene-based communication mechanisms in EVs generated by bone marrow and umbilical cord blood MSC (BMMSC and CBMSC, respectively). Both MSC types released vesicles with similar physical properties, although CBMSC were able to secrete EVs with faster kinetics. A pattern of preferentially incorporated EV transcripts was detected with respect to random internalization from the cytosol, after a validated normalization procedure was established. In the paradigm where EVs act as bioeffectors educating target cells, we demonstrated that kidney tubular cells lacking IL-10 expression and exposed to BMMSC-EVs and CBMSC-EVs acquired the IL-10 mRNA, which was efficiently translated into the corresponding protein. These findings suggest that horizontal mRNA transfer through EVs is a new mechanism in the MSC restoring ability observed in vivo that is here further demonstrated in an in vitro rescue model after acute cisplatin injury of tubular cells. Stem Cells 2017;35:1093-1105.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regiões 3' não Traduzidas/genética , Vesículas Extracelulares/ultraestrutura , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Cinética , Células-Tronco Mesenquimais/ultraestrutura , Modelos Biológicos , Compostos Orgânicos/metabolismo , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Coloração e Rotulagem , Transcrição Gênica
8.
J Allergy Clin Immunol ; 140(3): 797-808, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28237728

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. OBJECTIVE: We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. METHODS: We analyzed CD4+ helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. RESULTS: TH1/TH17 central memory (TH1/TH17CM) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. TH1/TH17CM cells were closely related to conventional TH17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing TH1 and TH1/TH17 subsets. However, while TH1 cells responded consistently to viruses, TH1/TH17CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive TH1/TH17CM cells but also blocked virus-specific TH1 cells. CONCLUSIONS: We propose that autoreactive TH1/TH17CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas TH1 cells perform immune surveillance. Thus the selective targeting of TH1/TH17 cells could inhibit relapses without causing John Cunningham virus-dependent progressive multifocal encephalomyelitis.


Assuntos
Antígenos Virais/imunologia , Autoantígenos/imunologia , Vírus JC/imunologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Citocinas/líquido cefalorraquidiano , Citocinas/imunologia , Feminino , Cloridrato de Fingolimode/uso terapêutico , Expressão Gênica , Humanos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Natalizumab/uso terapêutico
9.
Methods Mol Biol ; 1514: 63-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787792

RESUMO

Antigen-recognition by T cells requires the physical association with an antigen presenting cell (APC). At the interface between a T cell and an APC, the orchestrated redistribution of lipids, membrane receptors, and intracellular adaptors assembles a highly specialized junction, controlling the communication between the two cells, named the immunologic synapse (IS). The proper organization of the IS is a key step in host defense. Indeed, an appropriate T cell-APC interaction ensures the elimination of a wide range of pathogens and aberrant cells, whereas a deregulated IS formation leads to pathological situations such as infections, tumor development, or autoimmunity. Over the last decades T-cell scientists pioneered new imaging approaches to investigate IS assembly and organization. Microscopy techniques enable researchers to directly monitor, in space and time, the dynamics regulating T cell activation.In this chapter, we describe in detail different microscopy protocols to visualize and analyze the recruitment of different molecules and organelles at the IS.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Separação Celular/métodos , Microscopia Confocal/métodos , Linfócitos T/imunologia , Animais , Humanos , Sinapses Imunológicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
10.
Eur J Immunol ; 46(10): 2306-2310, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27726139

RESUMO

Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-ß and IL-6 in vitro. TGF-ß induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.


Assuntos
Infecções/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-6/metabolismo , Intestinos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Plasticidade Celular , Transdiferenciação Celular , Humanos , Imunidade Celular , Camundongos , Fatores de Transcrição
11.
Clin Transl Gastroenterol ; 7(7): e182, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27415620

RESUMO

OBJECTIVES: To provide a functional and phenotypic characterization of immune cells infiltrating small intestinal mucosa during non-IPEX autoimmune enteropathy (AIE), as to gain insights on the pathogenesis of this clinical condition. METHODS: Duodenal biopsies from a patient with AIE at baseline and following drug-induced remission were analyzed by immunohistochemistry, immunofluorescence, and flow cytometry, and results were compared with those obtained from patients with active celiac disease, ileal Crohn's disease and healthy controls. Lamina propria (LP) and intraepithelial (IELs) lymphocytes from AIE and controls were analyzed for mechanisms regulating cytokine production. Foxp3 expression and suppressive functions of LP regulatory T cells (Tregs) were analyzed. RESULTS: The quantitative deficit of Foxp3 expression in Tregs in AIE associates with unrestrained IL-17 production by IELs. Interleukin (IL)-17-producing IELs were rare in the uninflamed duodenum and in the ileum of Crohn's disease patients, and disappeared upon drug-induced AIE remission. IL-17 upregulation in CD4(+)IELs and CD4(+)LP T cells had different requirements for pro-inflammatory cytokines. Moreover, transforming growth factor-ß (TGF-ß) selectively enhanced IL-17 production by CD8(+)IELs. Intriguingly, although Foxp3(low)Tregs in AIE were poorly suppressive, they could upregulate GARP-LAP/TGF-ß surface expression and enhanced IL-17 production selectively by CD8(+)IELs. Finally, phosphorylated Smad2/3 was detectable in duodenal CD8(+) lymphocytes in active AIE in situ, indicating that they received signals from the TGF-ß receptor in vivo. CONCLUSIONS: AIE is characterized by the appearance of unconventional IL-17-producing IELs, which could be generated locally by pro-inflammatory cytokines and TGF-ß. These results suggest that Foxp3(+)Tregs and Treg-derived TGF-ß regulate IL-17 production by IELs in the small intestine and in AIE.

12.
Eur J Immunol ; 46(7): 1622-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129615

RESUMO

IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans.


Assuntos
Antígenos CD1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Memória Imunológica/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia , Comunicação Autócrina/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Apresentação Cruzada/imunologia , Citocinas/metabolismo , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
13.
Cell Rep ; 14(11): 2624-36, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26972013

RESUMO

Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells.


Assuntos
Interleucina-12/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Exocitose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Vídeo , Fosfotransferases/metabolismo , Proteínas R-SNARE/antagonistas & inibidores , Proteínas R-SNARE/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sinapses/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imagem com Lapso de Tempo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
14.
Cytokine Growth Factor Rev ; 30: 87-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26980675

RESUMO

Interleukin-10 (IL-10) is known to be a tolerogenic cytokine since it inhibits pro-inflammatory cytokine production and T cell stimulatory capacities of myeloid cells, such as macrophages and dendritic cells. In particular, it has a non-redundant tolerogenic role in intestinal immune homeostasis, since mice and patients with genetic defects in the IL-10/IL-10R pathway develop spontaneously colitis in the presence of a normal intestinal flora. However, IL-10 is also a growth and differentiation factor for B-cells, can promote autoantibody production and has consequently a pathogenic role in systemic lupus erythematosus. Moreover, IL-10 can promote cytotoxic T-cell (CTL) responses and this immunogenic activity might be relevant in type-1 diabetes and anti-tumor immune responses. This review summarizes these paradoxic effects of IL-10 on different types of immune responses, and proposes that different cellular sources of IL-10, in particular IL-10-secreting helper and regulatory T-cells, have different effects on B-cell and CTL responses. Based on this concept we discuss the rationales for targeting the IL-10 pathway in immune-mediated diseases and cancer.


Assuntos
Interleucina-10/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neoplasias/imunologia , Animais , Linfócitos B/imunologia , Homeostase , Humanos , Intestinos/imunologia , Linfócitos T/imunologia
15.
Front Immunol ; 6: 527, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528289

RESUMO

Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4(+) and CD8(+) T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4(+) T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α(+) mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α(-) mDCs preferentially prime CD4(+) T cells and promote Th2 or Th17 differentiation. BDCA-3(+) mDC2 are the human homologue of CD8α(+) mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8(+) T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against persistent infections or cancer.

16.
J Autoimmun ; 56: 23-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25277651

RESUMO

CD31, a trans-homophilic inhibitory receptor expressed on both T- and B-lymphocytes, drives the mutual detachment of interacting leukocytes. Intriguingly, T cell CD31 molecules relocate to the immunological synapse (IS), where the T and B cells establish a stable interaction. Here, we show that intact CD31 molecules, which are able to drive an inhibitory signal, are concentrated at the periphery of the IS but are excluded from the center of the IS. At this site, were the cells establish the closest contact, the CD31 molecules are cleaved, and most of the extracellular portion of the protein, including the trans-homophilic binding sites, is shed from the cell surface. T cells lacking CD31 trans-homophilic binding sites easily establish stable interactions with B cells; at the opposite, CD31 signaling agonists inhibit T/B IS formation as well as the ensuing helper T cell activation and function. Confocal microscopy and flow cytometry analysis of experimental T/B IS shows that the T cell inhibitory effects of CD31 agonists depend on SHP-2 signaling, which reduces the phosphorylation of ZAP70. The analysis of synovial tissue biopsies from patients affected by rheumatoid arthritis showed that T cell CD31 molecules are excluded from the center of the T/B cell synapses in vivo. Interestingly, the administration of CD31 agonists in vivo significantly attenuated the development of the clinical signs of collagen-induced arthritis in DBA1/J mice. Altogether, our data indicate that the T cell co-inhibitory receptor CD31 prevents the formation of functional T/B immunological synapses and that therapeutic strategies aimed at sustaining CD31 signaling will attenuate the development of autoimmune responses in vivo.


Assuntos
Artrite Experimental/imunologia , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Idoso , Animais , Artrite Experimental/metabolismo , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/metabolismo , Biópsia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular , Feminino , Humanos , Ativação Linfocitária/imunologia , Camundongos , Pessoa de Meia-Idade , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Proteína-Tirosina Quinase ZAP-70/metabolismo
17.
Nat Immunol ; 14(7): 723-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666293

RESUMO

The mechanisms by which Lat (a key adaptor in the T cell antigen receptor (TCR) signaling pathway) and the TCR come together after TCR triggering are not well understood. We investigate here the role of SNARE proteins, which are part of protein complexes involved in the docking, priming and fusion of vesicles with opposing membranes, in this process. Here we found, by silencing approaches and genetically modified mice, that the vesicular SNARE VAMP7 was required for the recruitment of Lat-containing vesicles to TCR-activation sites. Our results indicated that this did not involve fusion of Lat-containing vesicles with the plasma membrane. VAMP7, which localized together with Lat on the subsynaptic vesicles, controlled the phosphorylation of Lat, formation of the TCR-Lat-signaling complex and, ultimately, activation of T cells. Our findings suggest that the transport and docking of Lat-containing vesicles with target membranes containing TCRs regulates TCR-induced signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Proteínas R-SNARE/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Citometria de Fluxo , Humanos , Immunoblotting , Sinapses Imunológicas/imunologia , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Fosforilação
18.
PLoS One ; 7(9): e45279, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049782

RESUMO

Dendritic cells play a central role in keeping the balance between immunity and immune tolerance. A key factor in this equilibrium is the lifespan of DC, as its reduction restrains antigen availability leading to termination of immune responses. Here we show that lipopolysaccharide-driven DC maturation is paralleled by increased nuclear levels of p50 NF-κB, an event associated with DC apoptosis. Lack of p50 in murine DC promoted increased lifespan, enhanced level of maturation associated with increased expression of the proinflammatory cytokines IL-1, IL-18 and IFN-ß, enhanced capacity of activating and expanding CD4(+) and CD8(+) T cells in vivo and decreased ability to induce differentiation of FoxP3(+) regulatory T cells. In agreement, vaccination of melanoma-bearing mice with antigen-pulsed LPS-treated p50(-/-) BM-DC boosted antitumor immunity and inhibition of tumor growth. We propose that nuclear accumulation of the p50 NF-κB subunit in DC, as occurring during lipopolysaccharide-driven maturation, is a homeostatic mechanism tuning the balance between uncontrolled activation of adaptive immunity and immune tolerance.


Assuntos
Imunidade Adaptativa , Apresentação de Antígeno , Células Dendríticas/imunologia , Tolerância Imunológica , Melanoma/imunologia , Subunidade p50 de NF-kappa B/genética , Neoplasias Cutâneas/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/transplante , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Expressão Gênica/efeitos dos fármacos , Meia-Vida , Tolerância Imunológica/efeitos dos fármacos , Interferon beta/genética , Interferon beta/imunologia , Interleucina-1/genética , Interleucina-1/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Melanoma/genética , Melanoma/patologia , Camundongos , Subunidade p50 de NF-kappa B/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
19.
Immunobiology ; 214(9-10): 761-77, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19616341

RESUMO

Several experimental and epidemiological evidence indicate that, irrespective of the trigger for the development (chronic infection/inflammation or genetic alteration), a "smouldering" inflammation is associated with the most of, if not all, tumours and supports their progression. Several evidence have highlighted that tumours promote a constant influx of myelomonocytic cells that express inflammatory mediators supporting pro-tumoral functions. Myelomonocytic cells are key orchestrators of cancer-related inflammation associated with proliferation and survival of malignant cells, subversion of adaptive immune response, angiogenesis, stroma remodelling and metastasis formation. Although the connection between inflammation and cancer is unequivocal the mechanistic basis of such association are largely unknown. Recent advances in the understanding of the cellular and molecular pathways involved in cancer-related inflammation as well as their potential relevance as diagnostic, prognostic and therapeutic targets are herein discussed.


Assuntos
Inflamação/complicações , Inflamação/imunologia , Neoplasias/etiologia , Animais , Transformação Celular Neoplásica/imunologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Neoplasias/imunologia , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Fatores de Transcrição STAT/metabolismo
20.
Blood ; 112(9): 3723-34, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18694997

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that patrol tissues to sense danger signals and activate specific immune responses. In addition, they also play a role in inflammation and tissue repair. Here, we show that oxygen availability is necessary to promote full monocyte-derived DC differentiation and maturation. Low oxygen tension (hypoxia) inhibits expression of several differentiation and maturation markers (CD1a, CD40, CD80, CD83, CD86, and MHC class II molecules) in response to lipopolysaccharide (LPS), as well as their stimulatory capacity for T-cell functions. These events are paralleled by impaired up-regulation of the chemokine receptor CCR7, an otherwise necessary event for the homing of mature DCs to lymph nodes. In contrast, hypoxia strongly up-regulates production of proinflammatory cytokines, particularly TNFalpha and IL-1beta, as well as the inflammatory chemokine receptor CCR5. Subcutaneous injection of hypoxic DCs into the footpads of mice results in defective DC homing to draining lymph nodes, but enhanced leukocyte recruitment at the site of injection. Thus, hypoxia uncouples the promotion of inflammatory and tissue repair from sentinel functions in DCs, which we suggest is a safeguard mechanism against immune reactivity to damaged tissues.


Assuntos
Hipóxia Celular/imunologia , Hipóxia Celular/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Quimiocinas/metabolismo , Quimiotaxia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...