Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1358450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419655

RESUMO

Schizophrenia is a complex and severe mental disorder that affects approximately 1% of the global population. It is characterized by a wide range of symptoms, including delusions, hallucinations, disorganized speech and behavior, and cognitive impairment. Recent research has suggested that the immune system dysregulation may play a significant role in the pathogenesis of schizophrenia, and glial cells, such as astroglia and microglia known to be involved in neuroinflammation and immune regulation, have emerged as potential players in this process. The aim of this systematic review is to summarize the glial hallmarks of schizophrenia, choosing as cellular candidate the astroglia and microglia, and focusing also on disease-associated psychological (cognitive and emotional) changes. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed, Scopus, and Web of Science for articles that investigated the differences in astroglia and microglia in patients with schizophrenia, published in the last 5 years. The present systematic review indicates that changes in the density, morphology, and functioning of astroglia and microglia may be involved in the development of schizophrenia. The glial alterations may contribute to the pathogenesis of schizophrenia by dysregulating neurotransmission and immune responses, worsening cognitive capabilities. The complex interplay of astroglial and microglial activation, genetic/epigenetic variations, and cognitive assessments underscores the intricate relationship between biological mechanisms, symptomatology, and cognitive functioning in schizophrenia.

2.
Cell Rep ; 42(9): 113066, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656620

RESUMO

Fear-related disorders arise from inefficient fear extinction and have immeasurable social and economic costs. Here, we characterize mouse phenotypes that spontaneously show fear-independent behavioral traits predicting adaptive or maladaptive fear extinction. We find that, already before fear conditioning, specific morphological, electrophysiological, and transcriptomic patterns of cortical and amygdala pyramidal neurons predispose to fear-related disorders. Finally, by using an optogenetic approach, we show the possibility to rescue inefficient fear extinction by activating infralimbic pyramidal neurons and to impair fear extinction by activating prelimbic pyramidal neurons.


Assuntos
Medo , Córtex Pré-Frontal , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Medo/fisiologia , Transcriptoma/genética , Extinção Psicológica/fisiologia , Tonsila do Cerebelo/fisiologia , Células Piramidais/fisiologia
3.
Front Psychol ; 14: 1166127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275691

RESUMO

Trauma-related disorders are debilitating psychiatric conditions that influence people who have directly or indirectly witnessed adversities. Dramatic brain/body transformations and altered person's relationship with self, others, and the world occur when experiencing multiple types of traumas. In turn, these unfortunate modifications may contribute to predisposition to trauma-related vulnerability conditions, such as externalizing (aggression, delinquency, and conduct disorders) problems. This mini-review analyzes the relations between traumatic experiences (encoded as implicit and embodied procedural memories) and bodily self, sense of safety for the own body, and relationship with others, also in the presence of externalizing conducts. Furthermore, an emerging research area is also considered, highlighting principles and techniques of body-oriented and sensorimotor therapies designed to remodel bodily self-aspects in the presence of trauma, discussing their potential application with individuals showing externalizing problems.

4.
Neurosci Biobehav Rev ; 145: 105033, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610696

RESUMO

Trauma-related disorders are debilitating psychiatric conditions that affect people who have directly or indirectly witnessed adversities. Experiencing multiple types of traumas appears to be common during childhood, and even more so during adolescence. Dramatic brain/body transformations occurring during adolescence may provide a highly responsive substrate to external stimuli and lead to trauma-related vulnerability conditions, such as internalizing (anxiety, depression, anhedonia, withdrawal) and externalizing (aggression, delinquency, conduct disorders) problems. Analyzing relations among neuronal, endocrine, immune, and biochemical signatures of trauma and internalizing and externalizing behaviors, including the role of personality traits in shaping these conducts, this review highlights that the marked effects of traumatic experience on the brain/body involve changes at nearly every level of analysis, from brain structure, function and connectivity to endocrine and immune systems, from gene expression (including in the gut) to the development of personality.


Assuntos
Ansiedade , Transtorno da Conduta , Humanos , Adolescente , Ansiedade/psicologia , Agressão/fisiologia , Transtornos de Ansiedade , Transtorno da Personalidade Antissocial
5.
Neuroscientist ; : 10738584221120187, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052895

RESUMO

Whereas emotion theorists often keep their distance from the embodied approach, theorists of embodiment tend to treat emotion as a mainly physiologic process. However, intimate links between emotions and the body suggest that emotions are privileged phenomena to attempt to reintegrate mind and body and that the body helps the mind in shaping emotional responses. To date, research has favored the cerebrum over other parts of the brain as a substrate of embodied emotions. However, given the widely demonstrated contribution of the cerebellum to emotional processing, research in affective neuroscience should consider embodiment theory as a useful approach for evaluating the cerebellar role in emotion and affect. The aim of this review is to insert the cerebellum among the structures needed to embody emotions, providing illustrative examples of cerebellar involvement in embodied emotions (as occurring in empathic abilities) and in impaired identification and expression of embodied emotions (as occurring in alexithymia).

6.
Behav Sci (Basel) ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36004863

RESUMO

The analysis of sequences of words and prosody, meter, and rhythm provided in an interview addressing the capacity to identify and describe emotions represents a powerful tool to reveal emotional processing. The ability to express and identify emotions was analyzed by means of the Toronto Structured Interview for Alexithymia (TSIA), and TSIA transcripts were analyzed by Natural Language Processing to shed light on verbal features. The brain correlates of the capacity to translate emotional experience into words were determined through cortical thickness measures. A machine learning methodology proved that individuals with deficits in identifying and describing emotions (n = 7) produced language distortions, frequently used the present tense of auxiliary verbs, and few possessive determiners, as well as scarcely connected the speech, in comparison to individuals without deficits (n = 7). Interestingly, they showed high cortical thickness at left temporal pole and low at isthmus of the right cingulate cortex. Overall, we identified the neuro-linguistic pattern of the expression of emotional experience.

7.
Adv Exp Med Biol ; 1378: 255-269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35902476

RESUMO

This chapter addresses how the embodiment approach may represent a unifying perspective for examining the cerebellar role in emotional behavior and psychological traits. It is not intended to be exhaustive, but rather it can be a good starting point for advancing the cerebellar neural mechanism underlying embodiment. Our goal is to provide illustrative examples of embodied emotions and psychological traits in the emerging field of emotional and cognitive cerebellum. We illustrate how the cerebellum could be an important hub in the embodiment processes, associated with empathic abilities, impaired emotional identification and expression (as occurring for example in the presence of alexithymia), and specific psychological constructs (i.e., hypnotizability).


Assuntos
Cerebelo , Emoções , Imageamento por Ressonância Magnética
8.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269678

RESUMO

Approach and avoidance (A/A) tendencies are stable behavioral traits in responding to rewarding and fearful stimuli. They represent the superordinate division of emotion, and individual differences in such traits are associated with disease susceptibility. The neural circuitry underlying A/A traits is retained to be the cortico-limbic pathway including the amygdala, the central hub for the emotional processing. Furthermore, A/A-specific individual differences are associated with the activity of the endocannabinoid system (ECS) and especially of CB1 receptors whose density and functionality in amygdala differ according to A/A traits. ECS markedly interacts with the immune system (IS). However, how the interplay between ECS and IS is associated with A/A individual differences is still ill-defined. To fill this gap, here we analyzed the interaction between the gene expression of ECS and immune system (IS) in relation to individual differences. To unveil the deep architecture of ECS-IS interaction, we performed cell-specific transcriptomics analysis. Differential gene expression profiling, functional enrichment, and protein-protein interaction network analyses were performed in amygdala pyramidal neurons of mice showing different A/A behavioral tendencies. Several altered pro-inflammatory pathways were identified as associated with individual differences in A/A traits, indicating the chronic activation of the adaptive immune response sustained by the interplay between endocannabinoids and the IS. Furthermore, results showed that the interaction between the two systems modulates synaptic plasticity and neuronal metabolism in individual difference-specific manner. Deepening our knowledge about ECS/IS interaction may provide useful targets for treatment and prevention of psychopathology associated with A/A traits.


Assuntos
Endocanabinoides , Transcriptoma , Tonsila do Cerebelo/metabolismo , Animais , Endocanabinoides/metabolismo , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
9.
Neurosci Biobehav Rev ; 127: 334-352, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964307

RESUMO

The acquisition of fear associative memory requires brain processes of coordinated neural activity within the amygdala, prefrontal cortex (PFC), hippocampus, thalamus and brainstem. After fear consolidation, a suppression of fear memory in the absence of danger is crucial to permit adaptive coping behavior. Acquisition and maintenance of fear extinction critically depend on amygdala-PFC projections. The robust correspondence between the brain networks encompassed cortical and subcortical hubs involved into fear processing in humans and in other species underscores the potential utility of comparing the modulation of brain circuitry in humans and animals, as a crucial step to inform the comprehension of fear mechanisms and the development of treatments for fear-related disorders. The present review is aimed at providing a comprehensive description of the literature on recent clinical and experimental researches regarding the noninvasive brain stimulation and optogenetics. These innovative manipulations applied over specific hubs of fear matrix during fear acquisition, consolidation, reconsolidation and extinction allow an accurate characterization of specific brain circuits and their peculiar interaction within the specific fear processing.


Assuntos
Extinção Psicológica , Medo , Animais , Encéfalo , Humanos , Optogenética , Redação
10.
Sci Rep ; 11(1): 8804, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888760

RESUMO

Few investigations have analyzed the neuroanatomical substrate of empathic capacities in healthy subjects, and most of them have neglected the potential involvement of cerebellar structures. The main aim of the present study was to investigate the associations between bilateral cerebellar macro- and micro-structural measures and levels of cognitive and affective trait empathy (measured by Interpersonal Reactivity Index, IRI) in a sample of 70 healthy subjects of both sexes. We also estimated morphometric variations of cerebral Gray Matter structures, to ascertain whether the potential empathy-related peculiarities in cerebellar areas were accompanied by structural differences in other cerebral regions. At macro-structural level, the volumetric differences were analyzed by Voxel-Based Morphometry (VBM)- and Region of Interest (ROI)-based approaches, and at a micro-structural level, we analyzed Diffusion Tensor Imaging (DTI) data, focusing in particular on Mean Diffusivity and Fractional Anisotropy. Fantasy IRI-subscale was found to be positively associated with volumes in right cerebellar Crus 2 and pars triangularis of inferior frontal gyrus. The here described morphological variations of cerebellar Crus 2 and pars triangularis allow to extend the traditional cortico-centric view of cognitive empathy to the cerebellar regions and indicate that in empathizing with fictional characters the cerebellar and frontal areas are co-recruited.


Assuntos
Cerebelo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Cognição , Empatia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino
11.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671915

RESUMO

Food restriction is a robust nongenic, nonsurgical and nonpharmacologic intervention known to improve health and extend lifespan in various species. Food is considered the most essential and frequently consumed natural reward, and current observations have demonstrated homeostatic responses and neuroadaptations to sustained intermittent or chronic deprivation. Results obtained to date indicate that food deprivation affects glutamatergic synapses, favoring the insertion of GluA2-lacking α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptors (AMPARs) in postsynaptic membranes. Despite an increasing number of studies pointing towards specific changes in response to dietary restrictions in brain regions, such as the nucleus accumbens and hippocampus, none have investigated the long-term effects of such practice in the dorsal striatum. This basal ganglia nucleus is involved in habit formation and in eating behavior, especially that based on dopaminergic control of motivation for food in both humans and animals. Here, we explored whether we could retrieve long-term signs of changes in AMPARs subunit composition in dorsal striatal neurons of mice acutely deprived for 12 hours/day for two consecutive days by analyzing glutamatergic neurotransmission and the principal forms of dopamine and glutamate-dependent synaptic plasticity. Overall, our data show that a moderate food deprivation in experimental animals is a salient event mirrored by a series of neuroadaptations and suggest that dietary restriction may be determinant in shaping striatal synaptic plasticity in the physiological state.


Assuntos
Corpo Estriado/metabolismo , Jejum/fisiologia , Privação de Alimentos/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Dietoterapia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia
12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467450

RESUMO

Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Células Piramidais/fisiologia , Transcriptoma/genética , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Masculino , Memória/fisiologia , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Optogenética/métodos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia
13.
Cell Rep ; 31(7): 107644, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433955

RESUMO

Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Optogenética/métodos , Animais , Camundongos
14.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041135

RESUMO

To promote efficient explorative behaviors, subjects adaptively select spatial navigational strategies based on landmarks or a cognitive map. The hippocampus works alone or in conjunction with the dorsal striatum, both representing the neuronal underpinnings of the navigational strategies organized on the basis of different systems of spatial coordinate integration. The high expression of cannabinoid type 1 (CB1) receptors in structures related to spatial learning-such as the hippocampus, dorsal striatum and amygdala-renders the endocannabinoid system a critical target to study the balance between landmark- and cognitive map-based navigational strategies. In the present study, mice treated with the CB1-inverse agonist/antagonist AM251 or vehicle were trained on a Circular Hole Board, a task that could be solved through either navigational strategy. At the end of the behavioral testing, c-Fos immunoreactivity was evaluated in specific nuclei of the hippocampus, dorsal striatum and amygdala. AM251 treatment impaired spatial learning and modified the pattern of the performed navigational strategies as well as the c-Fos immunoreactivity in the hippocampus, dorsal striatum and amygdala. The present findings shed light on the involvement of CB1 receptors as part of the selection system of the navigational strategies implemented to efficiently solve the spatial problem.


Assuntos
Piperidinas/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Corpo Estriado/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
15.
Neuropharmacology ; 145(Pt A): 99-113, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462694

RESUMO

Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".


Assuntos
Meio Ambiente , Neurônios/metabolismo , Ocitocina/metabolismo , Comportamento Social , Agressão , Animais , Feminino , Abrigo para Animais , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Comportamento Materno/fisiologia , Comportamento Materno/psicologia , Neurônios/citologia , Distribuição Aleatória , Ratos Wistar , Fatores de Tempo
16.
Front Behav Neurosci ; 12: 254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483072

RESUMO

While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring's phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.

17.
Int J Neuropsychopharmacol ; 21(5): 485-498, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471437

RESUMO

Background: Approach system considered a motivational system that activates reward-seeking behavior is associated with exploration/impulsivity, whereas avoidance system considered an attentional system that promotes inhibition of appetitive responses is associated with active overt withdrawal. Approach and avoidance dispositions are modulated by distinct neurochemical profiles and synaptic patterns. However, the precise working of neurons and trafficking of molecules in the brain activity predisposing to approach and avoidance are yet unclear. Methods: In 3 phenotypes of inbred mice, avoiding, balancing, and approaching mice, selected by using the Approach/Avoidance Y-maze, we analyzed endogenous brain levels of brain derived neurotrophic factor, one of the main secretory proteins with pleiotropic action. To verify the effects of the acute increase of brain derived neurotrophic factor, balancing and avoiding mice were bilaterally brain derived neurotrophic factor-infused in the cortical cerebellar regions. Results: Approaching animals showed high levels of explorative behavior and response to novelty and exhibited higher brain derived neurotrophic factor levels in the cerebellar structures in comparison to the other 2 phenotypes of mice. Interestingly, brain derived neurotrophic factor-infused balancing and avoiding mice significantly increased their explorative behavior and response to novelty. Conclusions: Cerebellar brain derived neurotrophic factor may play a role in explorative and novelty-seeking responses that sustain the approach predisposition.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Encéfalo/metabolismo , Comportamento Exploratório/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Front Behav Neurosci ; 11: 73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536510

RESUMO

Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress.

19.
Cerebellum ; 16(1): 178-190, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26739351

RESUMO

The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental traits.


Assuntos
Cerebelo/anatomia & histologia , Cerebelo/diagnóstico por imagem , Personalidade , Sintomas Afetivos/fisiopatologia , Animais , Cerebelo/fisiologia , Comportamento Exploratório/fisiologia , Humanos , Tamanho do Órgão , Personalidade/fisiologia
20.
Front Aging Neurosci ; 8: 38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973513

RESUMO

Human and experimental studies have revealed putative neuroprotective and pro-cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM) volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To corroborate these initial results and develop new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-scale level, here we expanded behavioral analyses to the emotional domain (anxiety and coping skills), and carried out a fine-grained regional GM volumetric mapping by using high-resolution MRI-based voxel-based morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative, spatial and social) and emotional (anxiety and coping) abilities of aged (19 month-old at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed better mnesic performances as well as increased active coping skills. Importantly, these effects were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and function, an effect present also when the supplementation starts at late age. Our data are consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive decline, emotional dysfunctions and brain atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...