Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109480, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38715940

RESUMO

Ischemic stroke is the second leading cause of death and disability worldwide, and efforts to prevent stroke, mitigate secondary neurological damage, and promote neurological recovery remain paramount. Recent findings highlight the critical importance of microbiome-related metabolites, including vitamin B12 (VB12), in alleviating toxic stroke-associated neuroinflammation. Here, we showed that VB12 tonically programmed genes supporting microglial cell division and activation and critically controlled cellular fatty acid metabolism in homeostasis. Intriguingly, VB12 promoted mitochondrial transcriptional and metabolic activities and significantly restricted stroke-associated gene alterations in microglia. Furthermore, VB12 differentially altered the functions of microglial subsets during the acute phase of ischemic stroke, resulting in reduced brain damage and improved neurological function. Pharmacological depletion of microglia before ischemic stroke abolished VB12-mediated neurological improvement. Thus, our preclinical studies highlight the relevance of VB12 in the functional programming of microglia to alleviate neuroinflammation, minimize ischemic injury, and improve host neurological recovery after ischemic stroke.

2.
Exp Neurol ; 377: 114812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729551

RESUMO

Ischemic stroke induces a debilitating neurological insult, where inflammatory processes contribute greatly to the expansion and growth of the injury. Receptor-interacting protein kinase 2 (RIPK2) is most well-known for its role as the obligate kinase for NOD1/2 pattern recognition receptor signaling and is implicated in the pathology of various inflammatory conditions. Compared to a sham-operated control, ischemic stroke resulted in a dramatic increase in the active, phosphorylated form of RIPK2, indicating that RIPK2 may be implicated in the response to stroke injury. Here, we assessed the effects of pharmacological inhibition of RIPK2 to improve post-stroke outcomes in mice subjected to experimental ischemic stroke. We found that treatment at the onset of reperfusion with a RIPK2 inhibitor, which inhibits the phosphorylation and activation of RIPK2, resulted in marked improvements in post-stroke behavioral outcomes compared to the vehicle-administered group assessed 24 h after stroke. RIPK2 inhibitor-treated mice exhibited dramatic reductions in infarct volume, concurrent with reduced damage to the blood-brain barrier, as evidenced by reduced levels of active matrix metalloproteinase-9 (MMP-9) and leakage of blood-borne albumin in the ipsilateral cortex. To explore the protective mechanism of RIPK2 inhibition, we next pretreated mice with RIPK2 inhibitor or vehicle and examined transcriptomic alterations occurring in the ischemic brain 6 h after stroke. We observed a dramatic reduction in neuroinflammatory markers in the ipsilateral cortex of the inhibitor-treated group while also attaining a comprehensive view of the vast transcriptomic alterations occurring in the brain with inhibitor treatment through bulk RNA-sequencing of the injured cortex. Overall, we provide significant novel evidence that RIPK2 may represent a viable target for post-stroke pharmacotherapy and potentially other neuroinflammatory conditions.


Assuntos
AVC Isquêmico , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Animais , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Camundongos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino
3.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916956

RESUMO

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Hiperinsulinismo , Humanos , Feminino , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Microscopia Crioeletrônica , Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/genética , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/genética , DNA
4.
J Neuroinflammation ; 20(1): 221, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777791

RESUMO

BACKGROUND: Receptor-interacting protein kinase 2 (RIPK2) is a serine/threonine kinase whose activity propagates inflammatory signaling through its association with pattern recognition receptors (PRRs) and subsequent TAK1, NF-κB, and MAPK pathway activation. After stroke, dead and dying cells release a host of damage-associated molecular patterns (DAMPs) that activate PRRs and initiate a robust inflammatory response. We hypothesize that RIPK2 plays a damaging role in the progression of stroke injury by enhancing the neuroinflammatory response to stroke and that global genetic deletion or microglia-specific conditional deletion of Ripk2 will be protective following ischemic stroke. METHODS: Adult (3-6 months) male mice were subjected to 45 min of transient middle cerebral artery occlusion (tMCAO) followed by 24 h, 48 h, or 28 days of reperfusion. Aged male and female mice (18-24 months) were subjected to permanent ischemic stroke and sacrificed 48 h later. Infarct volumes were calculated using TTC staining (24-48 h) or Cresyl violet staining (28d). Sensorimotor tests (weight grip, vertical grid, and open field) were performed at indicated timepoints. Blood-brain barrier (BBB) damage, tight junction proteins, matrix metalloproteinase-9 (MMP-9), and neuroinflammatory markers were assessed via immunoblotting, ELISA, immunohistochemistry, and RT-qPCR. Differential gene expression profiles were generated through bulk RNA sequencing and nanoString®. RESULTS: Global genetic deletion of Ripk2 resulted in decreased infarct sizes and reduced neuroinflammatory markers 24 h after stroke compared to wild-type controls. Ripk2 global deletion also improved both acute and long-term behavioral outcomes with powerful effects on reducing infarct volume and mortality at 28d post-stroke. Conditional deletion of microglial Ripk2 (mKO) partially recapitulated our results in global Ripk2 deficient mice, showing reductive effects on infarct volume and improved behavioral outcomes within 48 h of injury. Finally, bulk transcriptomic profiling and nanoString data demonstrated that Ripk2 deficiency in microglia decreases genes associated with MAPK and NF-κB signaling, dampening the neuroinflammatory response after stroke injury by reducing immune cell activation and peripheral immune cell invasion. CONCLUSIONS: These results reveal a hitherto unknown role for RIPK2 in the pathogenesis of ischemic stroke injury, with microglia playing a distinct role. This study identifies RIPK2 as a potent propagator of neuroinflammatory signaling, highlighting its potential as a therapeutic target for post-stroke intervention.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Infarto , AVC Isquêmico/metabolismo , Proteínas Quinases/metabolismo , Isquemia Encefálica/metabolismo
5.
Neurochem Int ; 165: 105508, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863495

RESUMO

Synthetic cannabidiol (CBD) derivative VCE-004.8 is a peroxisome proliferator-activated receptor gamma (PPARγ) and cannabinoid receptor type 2 (CB2) dual agonist with hypoxia mimetic activity. The oral formulation of VCE-004.8, termed EHP-101, possesses anti-inflammatory properties and is currently in phase 2 clinical trials for relapsing forms of multiple sclerosis. The activation of PPARγ or CB2 receptors exerts neuroprotective effects by dampening neuroinflammation in ischemic stroke models. However, the effect of a dual PPARγ/CB2 agonist in ischemic stroke models is not known. Here, we demonstrate that treatment with VCE-004.8 confers neuroprotection in young mice subjected to cerebral ischemia. Male C57BL/6J mice, aged 3-4 months, were subjected to 30-min transient middle cerebral artery occlusion (MCAO). We evaluated the effect of intraperitoneal VCE-004.8 treatment (10 or 20 mg/kg) either at the onset of reperfusion or 4h or 6h after the reperfusion. Seventy-two hours after ischemia, animals were subjected to behavioral tests. Immediately after the tests, animals were perfused, and brains were collected for histology and PCR analysis. Treatment with VCE-004.8 either at the onset or 4h after reperfusion significantly reduced infarct volume and improved behavioral outcomes. A trend toward reduction in stroke injury was observed in animals receiving the drug starting 6h after recirculation. VCE-004.8 significantly reduced the expression of pro-inflammatory cytokines and chemokines involved in BBB breakdown. Mice receiving VCE-004.8 had significantly lower levels of extravasated IgG in the brain parenchyma, indicating protection against stroke-induced BBB disruption. Lower levels of active matrix metalloproteinase-9 were found in the brain of drug-treated animals. Our data show that VCE-004.8 is a promising drug candidate for treating ischemic brain injury. Since VCE-004.8 has been shown to be safe in the clinical setting, the possibility of repurposing its use as a delayed treatment option for ischemic stroke adds substantial translational value to our findings.


Assuntos
Isquemia Encefálica , Canabidiol , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Neuroproteção , PPAR gama/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos Endogâmicos C57BL , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças
6.
Am J Physiol Cell Physiol ; 324(3): C674-C678, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717106

RESUMO

Adropin is a highly conserved secreted peptide encoded by the Energy Homeostasis Associated gene (Enho). It is expressed in many tissues throughout the body, including the liver and brain, and plays a crucial role in maintaining lipid homeostasis and regulating insulin sensitivity. Adropin also participates in several other pathophysiological processes of multiple central nervous system (CNS) diseases. There is strong evidence of the protective effects of adropin in stroke, heart disease, aging, and other diseases. The peptide has been shown to reduce the risk of disease, attenuate histological alterations, and reduce cognitive decline associated with neurological disorders. Recent findings support its critical role in regulating endothelial cells and maintaining blood-brain barrier integrity through an endothelial nitric oxide synthase (eNOS)-dependent mechanism. Here we discuss current evidence of the protective effects of adropin in CNS diseases specifically involving the cerebrovasculature and highlight potential mechanisms through which the peptide exhibits these effects.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Doenças do Sistema Nervoso , Humanos , Envelhecimento , Células Endoteliais , Peptídeos e Proteínas de Sinalização Intercelular/genética , Doenças do Sistema Nervoso/genética , Peptídeos/genética
7.
Stroke ; 54(1): 234-244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305313

RESUMO

BACKGROUND: Adropin is a peptide encoded by the energy homeostasis-associated gene (Enho) that is highly expressed in the brain. Aging and stroke are associated with reduced adropin levels in the brain and plasma. We showed that treatment with synthetic adropin provides long-lasting neuroprotection in permanent ischemic stroke. However, it is unknown whether the protective effects of adropin are observed in aged animals following cerebral ischemia/reperfusion. We hypothesized that adropin provides neuroprotection in aged mice subjected to transient middle cerebral artery occlusion. METHODS: Aged (18-24 months old) male mice were subjected to 30 minutes of middle cerebral artery occlusion followed by 48 hours or 14 days of reperfusion. Sensorimotor (weight grip test and open field) and cognitive tests (Y-maze and novel object recognition) were performed at defined time points. Infarct volume was quantified by 2,3,5-triphenyltetrazolium chloride staining at 48 hours or Cresyl violet staining at 14 days post-middle cerebral artery occlusion. Blood-brain barrier damage, tight junction proteins, and MMP-9 (matrix metalloproteinase-9) were assessed 48 hours after middle cerebral artery occlusion by ELISA and Western blots. RESULTS: Genetic deletion of Enho significantly increased infarct volume and worsened neurological function, whereas overexpression of adropin dramatically reduced stroke volume compared to wild-type controls. Postischemic treatment with synthetic adropin peptide given at the onset of reperfusion markedly reduced infarct volume, brain edema, and significantly improved locomotor function and muscular strength at 48 hours. Delayed adropin treatment (4 hours after the stroke onset) reduced body weight loss, infarct volume, and muscular strength dysfunction, and improved long-term cognitive function. Postischemic adropin treatment significantly reduced blood-brain barrier damage. This effect was associated with reduced MMP-9 and preservation of tight junction proteins by adropin treatment. CONCLUSIONS: These data unveil a promising neuroprotective role of adropin in the aged brain after transient ischemic stroke via reducing neurovascular damage. These findings suggest that poststroke adropin therapy is a potential strategy to minimize brain injury and improve functional recovery in ischemic stroke patients.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Junções Íntimas/metabolismo
8.
Stroke ; 53(10): 3238-3242, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904018

RESUMO

Poststroke infections are common complications of stroke and are highly associated with poor outcomes for patients. Stroke induces profound immunodepression coupled with alterations to autonomic signaling, which together render the body more susceptible to infection from without (nosocomial/community-acquired infection) and from within (commensal bacterial infection). Critical to the hypothesis of commensal infection is the phenomenon of poststroke gut permeability and gut dysbiosis. Few studies have provided adequate explanations for the mechanisms underlying the molecular alterations that produce a more permeable gut and perturbed gut microbiota after stroke. A dysregulation in the production of matrix MMP-7 (metalloproteinase-7) may play a critical role in the progression of gut permeability after stroke. By cleaving junctional and extracellular matrix proteins, MMP-7 is capable of compromising gut barrier integrity. Because of MMP-7's unique abundance in the small intestine and its capacity to be induced in states of bacterial invasion and inflammation, along with its unique degradative capability, MMP-7 may be crucially important to the progression of gut permeability after ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Proteínas da Matriz Extracelular , Humanos , Metaloproteinase 7 da Matriz , Permeabilidade , Acidente Vascular Cerebral/complicações
9.
J Neuroinflammation ; 19(1): 168, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761277

RESUMO

Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) protein family, plays a crucial role in regulating inflammation and oxidative stress that are tightly related to stroke development and progression. Consequently, BRD4 blockade has attracted increasing interest for associated neurological diseases, including stroke. dBET1 is a novel and effective BRD4 degrader through the proteolysis-targeting chimera (PROTAC) strategy. We hypothesized that dBET1 protects against brain damage and neurological deficits in a transient focal ischemic stroke mouse model by reducing inflammation and oxidative stress and preserving the blood-brain barrier (BBB) integrity. Post-ischemic dBET1 treatment starting 4 h after stroke onset significantly ameliorated severe neurological deficits and reduced infarct volume 48 h after stroke. dBET1 markedly reduced inflammation and oxidative stress after stroke, indicated by multiple pro-inflammatory cytokines and chemokines including IL-1ß, IL-6, TNF-α, CCL2, CXCL1 and CXCL10, and oxidative damage markers 4-hydroxynonenal (4-HNE) and gp91phox and antioxidative proteins SOD2 and GPx1. Meanwhile, stroke-induced BBB disruption, increased MMP-9 levels, neutrophil infiltration, and increased ICAM-1 were significantly attenuated by dBET1 treatment. Post-ischemic dBET1 administration also attenuated ischemia-induced reactive gliosis in microglia and astrocytes. Overall, these findings demonstrate that BRD4 degradation by dBET1 improves acute stroke outcomes, which is associated with reduced neuroinflammation and oxidative stress and preservation of BBB integrity. This study identifies a novel role of BET proteins in the mechanisms resulting in ischemic brain damage, which can be leveraged to develop novel therapies.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Proteínas Nucleares , Acidente Vascular Cerebral , Fatores de Transcrição , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Camundongos , Doenças Neuroinflamatórias , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Proteólise , Acidente Vascular Cerebral/metabolismo , Fatores de Transcrição/metabolismo
10.
Redox Biol ; 48: 102197, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34826783

RESUMO

Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Long-term anatomical and functional outcomes were evaluated using histology, MRI, and a battery of sensorimotor and cognitive tests in mice subjected to ischemic stroke. Brain ischemia decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury, irrespective of sex. Mechanistically, adropin treatment reduced BBB damage, degradation of tight junction proteins, matrix metalloproteinase-9 activity, oxidative stress, and infiltration of neutrophils into the ischemic brain. Adropin significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS), Akt, and ERK1/2. While adropin therapy was remarkably protective in wild-type mice, it failed to reduce brain injury in eNOS-deficient animals, suggesting that eNOS is required for the protective effects of adropin in stroke. These data provide the first causal evidence that adropin exerts neurovascular protection in stroke through an eNOS-dependent mechanism. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.

11.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755016

RESUMO

SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.


Assuntos
Receptores ErbB/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteômica/métodos , Catálise , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Ocludina/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacologia , Ligação Proteica , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Domínios de Homologia de src
12.
Proc Natl Acad Sci U S A ; 116(2): 512-521, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30610181

RESUMO

Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.


Assuntos
Proteínas de Transporte/genética , Peptídeos Penetradores de Células , Endossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Motivos de Aminoácidos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Citosol/metabolismo , Endossomos/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
13.
Nat Commun ; 9(1): 4508, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375388

RESUMO

Activating mutations in PTPN11, encoding the cytosolic protein tyrosine phosphatase SHP2, result in developmental disorders and act as oncogenic drivers in patients with hematologic cancers. The allosteric inhibitor SHP099 stabilizes the wild-type SHP2 enzyme in an autoinhibited conformation that is itself destabilized by oncogenic mutations. Here, we report the impact of the highly activated and most frequently observed mutation, E76K, on the structure of SHP2, and investigate the effect of E76K and other oncogenic mutations on allosteric inhibition by SHP099. SHP2E76K adopts an open conformation but can be restored to the closed, autoinhibited conformation, near-identical to the unoccupied wild-type enzyme, when complexed with SHP099. SHP099 inhibitory activity against oncogenic SHP2 variants in vitro and in cells scales inversely with the activating strength of the mutation, indicating that either oncoselective or vastly more potent inhibitors will be necessary to suppress oncogenic signaling by the most strongly activating SHP2 mutations in cancer.


Assuntos
Regulação Alostérica/genética , Piperidinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Pirimidinas/metabolismo , Humanos , Mutação , Proteínas Oncogênicas , Piperidinas/farmacologia , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/ultraestrutura , Pirimidinas/farmacologia
14.
ACS Chem Biol ; 13(3): 647-656, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29304282

RESUMO

SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.


Assuntos
Regulação Alostérica , Sítio Alostérico , Piperidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirimidinas/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Conformação Proteica , Estabilidade Proteica
15.
Bioorg Med Chem ; 26(6): 1197-1202, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29150077

RESUMO

We have previously reported that miniature proteins containing a distinct array of 5 arginine residues on a folded α-helix - a penta-arg motif - traffic with high efficiency from endosomes into the cytosol and nucleus of mammalian cells. Here we evaluate whether a penta-arg motif can improve the intracellular trafficking of an otherwise impermeant hydrocarbon-stapled peptide, SAH-p53-4Rho. We prepared a panel of SAH-p53-4Rho variants containing penta-arg sequences with different spacings and axial arrangement and evaluated their overall uptake (as judged by flow cytometry) and their intracellular access (as determined by fluorescence correlation spectroscopy, FCS). One member of this panel reached the cytosol extremely well, matching the level achieved by SAH-p53-8Rho, a previously reported and highly permeant hydrocarbon-stapled peptide. Notably, we found no relationship between cellular uptake as judged by flow cytometry and cytosolic access as determined by FCS. This result reiterates that overall uptake and endosomal release represent fundamentally different biological processes. To determine cytosolic and/or nuclear access, one must measure concentration directly using a quantitative and non-amplified tool such as FCS. As has been observed for highly cell permeant miniature proteins such as ZF5.3, optimal penetration of hydrocarbon-stapled peptides into the cell cytosol results when the penta-arg motif is located within more (as opposed to less) structured regions.


Assuntos
Arginina/química , Citosol/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Hidrocarbonetos/química , Peptídeos/química , Peptídeos/farmacologia , Espectrometria de Fluorescência
16.
Bioorg Med Chem ; 25(24): 6479-6485, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29089257

RESUMO

The PTPN11 oncogene encodes the cytoplasmic protein tyrosine phosphatase SHP2, which, through its role in multiple signaling pathways, promotes the progression of hematological malignancies and other cancers. Here, we employ high-throughput screening to discover a lead chemical scaffold, the benzothiazolopyrimidones, that allosterically inhibits this oncogenic phosphatase by simultaneously engaging the C-SH2 and PTP domains. We improved our lead to generate an analogue that better suppresses SHP2 activity in vitro. Suppression of Erk phopsphorylation by the lead compound is also consistent with SHP2 inhibition in AML cells. Our findings provide an alternative starting point for therapeutic intervention and will catalyze investigations into the relationship between SHP2 conformational regulation, activity, and disease progression.


Assuntos
Benzotiazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirimidinonas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
17.
Biochemistry ; 55(15): 2269-77, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27030275

RESUMO

The proto-oncogene PTPN11 encodes a cytoplasmic protein tyrosine phosphatase, SHP2, which is required for normal development and sustained activation of the Ras-MAPK signaling pathway. Germline mutations in SHP2 cause developmental disorders, and somatic mutations have been identified in childhood and adult cancers and drive leukemia in mice. Despite our knowledge of the PTPN11 variations associated with pathology, the structural and functional consequences of many disease-associated mutants remain poorly understood. Here, we combine X-ray crystallography, small-angle X-ray scattering, and biochemistry to elucidate structural and mechanistic features of three cancer-associated SHP2 variants harboring single point mutations within the N-SH2:PTP interdomain autoinhibitory interface. Our findings directly compare the impact of each mutation on autoinhibition of the phosphatase and advance the development of structure-guided and mutation-specific SHP2 therapies.


Assuntos
Neoplasias/genética , Mutação Puntual , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Substituição de Aminoácidos/genética , Transformação Celular Neoplásica/genética , Cristalografia por Raios X , Ativação Enzimática/genética , Humanos , Leucemia/genética , Ligantes , Modelos Moleculares , Oncogenes/genética , Estrutura Terciária de Proteína/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proto-Oncogene Mas , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade
18.
J Am Chem Soc ; 137(44): 14084-93, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26465072

RESUMO

The inefficient delivery of proteins into mammalian cells remains a major barrier to realizing the therapeutic potential of many proteins. We and others have previously shown that superpositively charged proteins are efficiently endocytosed and can bring associated proteins and nucleic acids into cells. The vast majority of cargo delivered in this manner, however, remains in endosomes and does not reach the cytosol. In this study we designed and implemented a screen to discover peptides that enhance the endosomal escape of proteins fused to superpositively charged GFP (+36 GFP). From a screen of peptides previously reported to disrupt microbial membranes without known mammalian cell toxicity, we discovered a 13-residue peptide, aurein 1.2, that substantially increases cytosolic protein delivery by up to ∼5-fold in a cytosolic fractionation assay in cultured cells. Four additional independent assays for nonendosomal protein delivery collectively suggest that aurein 1.2 enhances endosomal escape of associated endocytosed protein cargo. Structure-function studies clarified peptide sequence and protein conjugation requirements for endosomal escape activity. When applied to the in vivo delivery of +36 GFP-Cre recombinase fusions into the inner ear of live mice, fusion with aurein 1.2 dramatically increased nonendosomal Cre recombinase delivery potency, resulting in up to 100% recombined inner hair cells and 96% recombined outer hair cells, compared to 0-4% recombined hair cells from +36-GFP-Cre without aurein 1.2. Collectively, these findings describe a genetically encodable, endosome escape-enhancing peptide that can substantially increase the cytoplasmic delivery of cationic proteins in vitro and in vivo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Sistemas de Liberação de Medicamentos , Orelha Interna/citologia , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Células Cultivadas , Citoplasma/metabolismo , Orelha Interna/metabolismo , Endossomos/química , Camundongos
19.
J Am Chem Soc ; 137(7): 2536-2541, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25679876

RESUMO

We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of "cell-penetrating peptides" traffic to the cytosol of mammalian cells. We find that certain molecules containing a "penta-arg" motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells.


Assuntos
Citosol/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Transporte Proteico , Espectrometria de Fluorescência
20.
Biochemistry ; 53(24): 4034-46, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24896852

RESUMO

Cyclic heptapeptide cyclo(FΦRRRRQ) (cFΦR4, where Φ is l-2-naphthylalanine) was recently found to be efficiently internalized by mammalian cells. In this study, its mechanism of internalization was investigated by perturbing various endocytic events through the introduction of pharmacologic agents and genetic mutations. The results show that cFΦR4 binds directly to membrane phospholipids, is internalized into human cancer cells through endocytosis, and escapes from early endosomes into the cytoplasm. Its cargo capacity was examined with a wide variety of molecules, including small-molecule dyes, linear and cyclic peptides of various charged states, and proteins. Depending on the nature of the cargos, they may be delivered by endocyclic (insertion of cargo into the cFΦR4 ring), exocyclic (attachment of cargo to the Gln side chain), or bicyclic approaches (fusion of cFΦR4 and cyclic cargo rings). The overall delivery efficiency (i.e., delivery of cargo into the cytoplasm and nucleus) of cFΦR4 was 4-12-fold higher than those of nonaarginine, HIV Tat-derived peptide, or penetratin. The higher delivery efficiency, coupled with superior serum stability, minimal toxicity, and synthetic accessibility, renders cFΦR4 a useful transporter for intracellular cargo delivery and a suitable system for investigating the mechanism of endosomal escape.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Peptídeos Cíclicos/metabolismo , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Produtos do Gene tat/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Oligopeptídeos/metabolismo , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...