Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1266, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092861

RESUMO

Culture-adapted human mesenchymal stromal cells (hMSCs) are appealing candidates for regenerative medicine applications. However, these cells implanted in lesions as single cells or tissue constructs encounter an ischemic microenvironment responsible for their massive death post-transplantation, a major roadblock to successful clinical therapies. We hereby propose a paradigm shift for enhancing hMSC survival by designing, developing, and testing an enzyme-controlled, nutritive hydrogel with an inbuilt glucose delivery system for the first time. This hydrogel, composed of fibrin, starch (a polymer of glucose), and amyloglucosidase (AMG, an enzyme that hydrolyze glucose from starch), provides physiological glucose levels to fuel hMSCs via glycolysis. hMSCs loaded in these hydrogels and exposed to near anoxia (0.1% pO2) in vitro exhibited improved cell viability and angioinductive functions for up to 14 days. Most importantly, these nutritive hydrogels promoted hMSC viability and paracrine functions when implanted ectopically. Our findings suggest that local glucose delivery via the proposed nutritive hydrogel can be an efficient approach to improve hMSC-based therapeutic efficacy.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular , Glucose/metabolismo , Amido/metabolismo
2.
Stem Cell Rev Rep ; 19(8): 2869-2885, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642900

RESUMO

Adipose tissue-derived mesenchymal stem cells (ATSCs) have been used as an alternative to bone marrow-derived mesenchymal stem cells (BMSCs) for bone tissue engineering applications. The ability of ATSCs to promote new bone formation remains lower than that of BMSCs. This study aimed to investigate the mechanisms underlying osteogenicity differences between human ATSCs and BMSCs in ceramic constructs, focusing on the effects of inflammation on this process. In contrast to ATSC-containing constructs, which did not induce bone formation in an ectopic mouse model, BMSC constructs consistently did so. Gene expression analysis revealed that human BMSCs, concomitantly with host murine progenitors, differentiated into the osteogenic lineage early post-implantation. In contrast, ATSCs differentiated later, when few implanted viable cells remained post-implantation, while the host murine cells did not differentiate. Comparison of the inflammatory profile in the cell constructs indicated concomitant upregulation of some human and murine inflammatory genes in the ATSC-constructs compared to the BMSC-constructs during the first-week post-implantation. The high level of chemokine production by the ATSCs was confirmed at the gene and protein levels before implantation. The immune cell recruitment within the constructs was then explored post-implantation. Higher numbers of TRAP-/ MRC1 (CD206) + multinucleated giant cells, NOS2 + M1, and ARG1 + M2 macrophages were present in the ATSC constructs than in the BMSC constructs. These results proved that ATSCs are a transient source of inflammatory cytokines promoting a transient immune response post-implantation; this milieu correlates with impaired osteogenic differentiation of both the implanted ATSCs and the host osteoprogenitor cells.


Assuntos
Tecido Adiposo , Osteogênese , Humanos , Camundongos , Animais , Osteogênese/genética , Células Cultivadas , Células-Tronco , Imunidade Inata
3.
Spine (Phila Pa 1976) ; 47(14): 1027-1035, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34935757

RESUMO

STUDY DESIGN: In vitro analysis. OBJECTIVE: The aim of this study was to assess the effect of three-dimensional (3D) printing of porous titanium on human mesenchymal stem cell (hMSC) adhesion, proliferation, and osteogenic differentiation. SUMMARY OF BACKGROUND DATA: A proprietary implant using three-dimensional porous titanium (3D-pTi) that mimics trabecu-lar bone structure, roughness, porosity, and modulus of elasticity was created (Ti-LIFE technology™, Spineart SA Switzerland). Such implants may possess osteoinductive properties augmenting fusion in addition to their structural advantages. However, the ability of 3D-pTi to affect in vitro cellular proliferation and osteogenic differentiation remains undefined. METHODS: Disks of 3D-pTi with a porosity of 70% to 75% and pore size of 0.9 mm were produced using additive manufacturing technology. 2D Ti6Al4V (2D-Ti) and 2D polyetheretherketone (2D-PEEK) disks were prepared using standard manufacturing process. Tissue culture plastic (TCP) served as the control surface. All discs were characterized using 2D-micros-copy, scanning electron microscopy (SEM), and x-ray micro-computed tomography. Forty thousand hMSCs were seeded on the disks and TCP and cultured for 42 days. hMSC morphology was assessed using environmental SEM and confocal imaging following phalloidin staining. hMSC proliferation was evaluated using DNA fluorescent assay. hMSC differentiation was assessed using RT-qPCR for genes involved in hMSC osteogenic differentiation and biochemical assays were performed for alkaline phosphatase activity (ALP) and calcium content. RESULTS: 3D-pTi lead to a higher cell number as compared to 2D-Ti and 2D-PEEK at D21, D28 and D42. ALP activity of hMSCs seeded into 3D-pTi scaffolds was as high as or higher than that of hMSCs seeded onto TCP controls over all time points and consistently higher than that of hMSCs seeded onto 2D-Ti scaffolds. However, when ALP activity was normalized to protein content, no statistical differences were found between all scaffolds tested and TCP controls. CONCLUSION: 3D-pTi provides a scaffold for bone formation that structurally mimics cancellous bone and improves hMSC adhesion and proliferation compared to 2D-Ti and PEEK.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Biomimética , Osso Esponjoso , Diferenciação Celular , Proliferação de Células , Humanos , Cetonas/química , Polietilenoglicóis/química , Impressão Tridimensional , Alicerces Teciduais/química , Titânio/farmacologia , Microtomografia por Raio-X
4.
Mol Brain ; 14(1): 112, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34247625

RESUMO

Memory and long term potentiation require de novo protein synthesis. A key regulator of this process is mTORC1, a complex comprising the mTOR kinase. Growth factors activate mTORC1 via a pathway involving PI3-kinase, Akt, the TSC complex and the GTPase Rheb. In non-neuronal cells, translocation of mTORC1 to late endocytic compartments (LEs), where Rheb is enriched, is triggered by amino acids. However, the regulation of mTORC1 in neurons remains unclear. In mouse hippocampal neurons, we observed that BDNF and treatments activating NMDA receptors trigger a robust increase in mTORC1 activity. NMDA receptors activation induced a significant recruitment of mTOR onto lysosomes even in the absence of external amino acids, whereas mTORC1 was evenly distributed in neurons under resting conditions. NMDA receptor-induced mTOR translocation to LEs was partly dependent on the BDNF receptor TrkB, suggesting that BDNF contributes to the effect of NMDA receptors on mTORC1 translocation. In addition, the combination of Rheb overexpression and artificial mTORC1 targeting to LEs by means of a modified component of mTORC1 fused with a LE-targeting motif strongly activated mTOR. To gain spatial and temporal control over mTOR localization, we designed an optogenetic module based on light-sensitive dimerizers able to recruit mTOR on LEs. In cells expressing this optogenetic tool, mTOR was translocated to LEs upon photoactivation. In the absence of growth factor, this was not sufficient to activate mTORC1. In contrast, mTORC1 was potently activated by a combination of BDNF and photoactivation. The data demonstrate that two important triggers of synaptic plasticity, BDNF and NMDA receptors, synergistically power the two arms of the mTORC1 activation mechanism, i.e., mTORC1 translocation to LEs and Rheb activation. Moreover, they unmask a functional link between NMDA receptors and mTORC1 that could underlie the changes in the synaptic proteome associated with long-lasting changes in synaptic strength.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Dendritos/metabolismo , Endocitose , Endossomos/metabolismo , Células HeLa , Hipocampo/citologia , Humanos , Camundongos , Optogenética , Fosforilação , Multimerização Proteica , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Receptor trkB/metabolismo , Proteína S6 Ribossômica
5.
Acta Biomater ; 116: 186-200, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911108

RESUMO

While human bone morphogenetic protein-2 (BMP-2) is a promising growth factor for bone regeneration, a major challenge in biomedical applications is finding an optimal carrier for its delivery at the site of injury. Because of their natural affinities for growth factors (including BMP-2) as well as their role in instructing cell function, cultured cell-derived extracellular matrices (ECM) are of special interest. We hereby hypothesized that a "bony matrix" containing mineralized, osteogenic ECM is a potential efficacious carrier of BMP-2 for promoting bone formation and, therefore, compared the efficacy of the decellularized ECM derived from osteogenic-differentiated human mesenchymal stem cells (hMSCs) to the one obtained from ECM from undifferentiated hMSCs. Our results provided evidence that both ECMs can bind BMP-2 and promote bone formation when implanted ectopically in mice. The osteoinductive potential of BMP-2, however, was greater when loaded within an osteogenic MSC-derived ECM; this outcome was correlated with higher sequestration capacity of BMP-2 over time in vivo. Interestingly, although the BMP-2 mainly bound onto the mineral crystals contained within the osteogenic MSC derived-ECM, these mineral components were not involved in the observed higher osteoinductivity, suggesting that the organic components were the critical components for the matrix efficacy as BMP-2 carrier.


Assuntos
Células-Tronco Mesenquimais , Animais , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Diferenciação Celular , Células Cultivadas , Matriz Extracelular , Camundongos , Osteogênese
6.
Tissue Eng Part A ; 25(7-8): 642-651, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311857

RESUMO

IMPACT STATEMENT: A strategy for improving the efficacy of stem cell-based bone tissue engineering (TE) constructs is to combine bone morphogenetic protein-2 (BMP-2) with multipotent stromal cells (MSC). Previous studies on the potential cooperative effect of BMP-2 with human multipotent stromal cells (hMSCs) on bone formation in vivo have, however, shown contradictory results likely due to the various and/or inappropriate BMP-2 doses. Our results provided evidence that the addition of BMP-2 at low dose only was beneficial to improve the osteogenic potential of hMSCs-containing TE constructs, whereas BMP-2 delivered at high dose overcame the advantage of combining this growth factor with hMSCs. This new knowledge will help in designing improved combination strategies for tissue regeneration with better clinical outcomes.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Proteína Morfogenética Óssea 2/administração & dosagem , Células Cultivadas , Humanos , Osteogênese/efeitos dos fármacos
7.
Mater Sci Eng C Mater Biol Appl ; 95: 343-354, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573258

RESUMO

This work is devoted to the processing of bone morphogenetic protein (BMP-2) functionalized silicate substituted hydroxyapatite (SiHA) ceramic spheres. The motivation behind it is to develop injectable hydrogel/bioceramic composites for bone reconstruction applications. SiHA microspheres were shaped by spray drying and thoroughly characterized. The silicate substitution was used to provide preferred chemical sites at the ceramic surface for the covalent immobilization of BMP-2. In order to control the density and the release of the immobilized BMP-2, its grafting was performed via ethoxysilanes and polyethylene glycols. A method based on Kaiser's test was used to quantify the free amino groups of grafted organosilanes available at the ceramic surface for BMP-2 immobilization. The SiHA surface modification was investigated by means of X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and thermogravimetry coupled with mass spectrometry. The BMP-2 bioactivity was assessed, in vitro, by measuring the luciferase expression of a stably transfected C3H10 cell line (C3H10-BRE/Luc cells). The results provided evidence that the BMP-2 grafted onto SiHA spheres remained bioactive.


Assuntos
Proteína Morfogenética Óssea 2/química , Durapatita/química , Silicatos/química , Animais , Linhagem Celular Tumoral , Espectrometria de Massas , Camundongos , Espectroscopia Fotoeletrônica , Polietilenoglicóis/química , Alicerces Teciduais/química
8.
Sci Rep ; 8(1): 17106, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459360

RESUMO

Use of human induced pluripotent stem cells (h-iPSCs) for bone tissue engineering is most appealing, because h-iPSCs are an inexhaustible source of osteocompetent cells. The present study investigated the contribution of undifferentiated h-iPSCs and elucidated aspects of the underlying mechanism(s) of the involvement of these cells to new bone formation. Implantation of undifferentiated h-iPSCs seeded on coral particles in ectopic sites of mice resulted in expression of osteocalcin and DMP-1, and in mineral content similar to that of the murine bone. The number of the implanted h-iPSCs decreased with time and disappeared by 30 days post-implantation. In contrast, expression of the murine osteogenic genes at day 15 and 30 post-implantation provided, for the first time, evidence that the implanted h-iPSCs affected the observed outcomes via paracrine mechanisms. Supporting evidence was provided because supernatant conditioned media from h-iPSCs (h-iPSC CM), promoted the osteogenic differentiation of human mesenchymal stem cells (h-MSCs) in vitro. Specifically, h-iPSC CM induced upregulation of the BMP-2, BMP-4 and BMP-6 genes, and promoted mineralization of the extracellular matrix. Given the current interest in the use of h-iPSCs for regenerative medicine applications, our study contributes new insights into aspects of the mechanism underlying the bone promoting capability of h-iPSCs.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Comunicação Parácrina , Animais , Proteínas Morfogenéticas Ósseas/genética , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Medicina Regenerativa , Engenharia Tecidual , Regulação para Cima
9.
Stem Cells ; 36(3): 363-376, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266629

RESUMO

Mesenchymal stem cells (MSCs) hold considerable promise in tissue engineering (TE). However, their poor survival when exogenously administered limits their therapeutic potential. Previous studies from our group demonstrated that lack of glucose (glc) (but not of oxygen) is fatal to human MSCs because it serves as a pro-survival and pro-angiogenic molecule for human MSCs (hMSCs) upon transplantation. However, which energy-providing pathways MSCs use to metabolize glc upon transplantation? Are there alternative energetic nutrients to replace glc? And most importantly, do hMSCs possess significant intracellular glc reserves for ensuring their survival upon transplantation? These remain open questions at the forefront of TE based-therapies. In this study, we established for the first time that the in vivo environment experienced by hMSCs is best reflected by near-anoxia (0.1% O2 ) rather than hypoxia (1%-5% O2 ) in vitro. Under these near-anoxia conditions, hMSCs rely almost exclusively on glc through anerobic glycolysis for ATP production and are unable to use either exogenous glutamine, serine, or pyruvate as energy substrates. Most importantly, hMSCs are unable to adapt their metabolism to the lack of exogenous glc, possess a very limited internal stock of glc and virtually no ATP reserves. This lack of downregulation of energy turnover as a function of exogenous glc level results in a rapid depletion of hMSC energy reserves that explains their poor survival rate. These new insights prompt for the development of glc-releasing scaffolds to overcome this roadblock plaguing the field of TE based-therapies. Stem Cells 2018;36:363-376.


Assuntos
Sobrevivência Celular/fisiologia , Glucose/metabolismo , Glicólise/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Glutamina/metabolismo , Humanos , Oxigênio/metabolismo , Engenharia Tecidual
10.
J Tissue Eng Regen Med ; 12(3): e1511-e1524, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28875591

RESUMO

In the present study, we evaluated the benefits of an adipogenic predifferentiation, the pathway most closely related to osteoblastogenesis, on the pro-osteogenic potential of human adult multipotent bone marrow stromal cells (hBMSCs), both in vitro and in vivo. Adipogenic differentiation of hBMSCs for 14 days resulted in a heterogeneous cell population from which the most adipogenic-committed cells were eliminated by their lack of readhesion ability. Our results provided evidence that the select adherent adipogenic differentiated hBMSCs (sAD+ cells) express a gene profile characteristic of both adipogenic and osteogenic lineages. In vitro, when cultured in osteogenic medium, sAD+ differentiated along the osteogenic lineage faster than undifferentiated hBMSCs. In vivo, in an ectopic mouse model, sAD+ exhibited a significantly higher bone formation capability compared with undifferentiated hBMSCs. We sought, then, to investigate the underlying mechanisms responsible for such beneficial effects of adipogenic predifferentiation on bone formation and found that this outcome was not linked to a better cell survival post-implantation. The secretome of sAD+ was both proangiogenic and chemoattractant, but its potential did not supersede the one of undifferentiated hBMSCs. However, using co-culture systems, we observed that the sAD+ paracrine factors were pro-osteogenic on undifferentiated hBMSCs. In conclusion, adipogenic priming endows hBMSCs with high osteogenic potential as well as pro-osteogenic paracrine-mediated activity. This preconditioning appears as a promising strategy for bone tissue engineering technology in order to improve the hBMSC osteogenic potency in vivo.


Assuntos
Adipogenia , Osso e Ossos/fisiologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Engenharia Tecidual/métodos , Adipogenia/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Técnicas de Cocultura , Feminino , Humanos , Isquemia/patologia , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
11.
Stem Cells ; 35(1): 181-196, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578059

RESUMO

A major impediment to the development of therapies with mesenchymal stem cells/multipotent stromal cells (MSC) is the poor survival and engraftment of MSCs at the site of injury. We hypothesized that lowering the energetic demand of MSCs by driving them into a quiescent state would enhance their survival under ischemic conditions. Human MSCs (hMSCs) were induced into quiescence by serum deprivation (SD) for 48 hours. Such preconditioned cells (SD-hMSCs) exhibited reduced nucleotide and protein syntheses compared to unpreconditioned hMSCs. SD-hMSCs sustained their viability and their ATP levels upon exposure to severe, continuous, near-anoxia (0.1% O2 ) and total glucose depletion for up to 14 consecutive days in vitro, as they maintained their hMSC multipotential capabilities upon reperfusion. Most importantly, SD-hMSCs showed enhanced viability in vivo for the first week postimplantation in mice. Quiescence preconditioning modified the energy-metabolic profile of hMSCs: it suppressed energy-sensing mTOR signaling, stimulated autophagy, promoted a shift in bioenergetic metabolism from oxidative phosphorylation to glycolysis and upregulated the expression of gluconeogenic enzymes, such as PEPCK. Since the presence of pyruvate in cell culture media was critical for SD-hMSC survival under ischemic conditions, we speculate that these cells may utilize some steps of gluconeogenesis to overcome metabolic stress. These findings support that SD preconditioning causes a protective metabolic adaptation that might be taken advantage of to improve hMSC survival in ischemic environments. Stem Cells 2017;35:181-196.


Assuntos
Ciclo Celular , Isquemia/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Metaboloma , Trifosfato de Adenosina/metabolismo , Autofagia , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Humanos , Transplante de Células-Tronco Mesenquimais , Reperfusão , Estresse Fisiológico
12.
Mol Biol Cell ; 25(20): 3195-209, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143404

RESUMO

Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Vesículas Secretórias/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Transporte Biológico , Humanos , Miosina Tipo II/metabolismo
13.
J Neurosci ; 32(7): 2564-77, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396429

RESUMO

Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Células Enterocromafins/metabolismo , Células Enterocromafins/ultraestrutura , Humanos , Ligação Proteica/fisiologia , Vesículas Secretórias/ultraestrutura
14.
Immunity ; 35(3): 361-74, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21820334

RESUMO

Engagement of the B cell receptor (BCR) by surface-tethered antigens (Ag) leads to formation of a synapse that promotes Ag uptake for presentation onto major histocompatibility complex class II (MHCII) molecules. We have highlighted the membrane trafficking events and associated molecular mechanisms involved in Ag extraction and processing at the B cell synapse. MHCII-containing lysosomes are recruited to the synapse where they locally undergo exocytosis, allowing synapse acidification and the extracellular release of hydrolases that promote the extraction of the immobilized Ag. Lysosome recruitment and secretion results from the polarization of the microtubule-organizing center (MTOC), which relies on the cell division cycle (Cdc42)-downstream effector, atypical protein kinase C (aPKCζ). aPKCζ is phosphorylated upon BCR engagement, associates to lysosomal vesicles, and is required for their polarized secretion at the B cell synapse. Regulation of B lymphocyte polarity therefore emerges as a central mechanism that couples Ag extraction to Ag processing and presentation.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Sinapses Imunológicas , Lisossomos , Receptores de Antígenos de Linfócitos B/fisiologia , Animais , Polaridade Celular , Lisossomos/metabolismo , Camundongos , Proteína Quinase C/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Proteína cdc42 de Ligação ao GTP/imunologia
15.
J Clin Invest ; 121(4): 1508-18, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21364284

RESUMO

Wilson disease (WD) is a rare hereditary condition that is caused by a genetic defect in the copper-transporting ATPase ATP7B that results in hepatic copper accumulation and lethal liver failure. The present study focuses on the structural mitochondrial alterations that precede clinical symptoms in the livers of rats lacking Atp7b, an animal model for WD. Liver mitochondria from these Atp7b­/­ rats contained enlarged cristae and widened intermembrane spaces, which coincided with a massive mitochondrial accumulation of copper. These changes, however, preceded detectable deficits in oxidative phosphorylation and biochemical signs of oxidative damage, suggesting that the ultrastructural modifications were not the result of oxidative stress imposed by copper- dependent Fenton chemistry. In a cell-free system containing a reducing dithiol agent, isolated mitochondria exposed to copper underwent modifications that were closely related to those observed in vivo. In this cell-free system, copper induced thiol modifications of three abundant mitochondrial membrane proteins, and this correlated with reversible intramitochondrial membrane crosslinking, which was also observed in liver mitochondria from Atp7b­/­ rats. In vivo, copper-chelating agents reversed mitochondrial accumulation of copper, as well as signs of intra-mitochondrial membrane crosslinking, thereby preserving the functional and structural integrity of mitochondria. Together, these findings suggest that the mitochondrion constitutes a pivotal target of copper in WD.


Assuntos
Degeneração Hepatolenticular/patologia , Mitocôndrias Hepáticas/patologia , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte de Cátions , Sistema Livre de Células , Quelantes/farmacologia , Cobre/metabolismo , ATPases Transportadoras de Cobre , Reagentes de Ligações Cruzadas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Compostos de Sulfidrila/metabolismo
16.
Anal Chem ; 80(13): 5051-8, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18510346

RESUMO

A pathological increase of the permeability of the mitochondrial membranes may culminate in the irreversible rupture of the mitochondrial outer membrane. Such a permeability transition is lethal because it results in the release of death-inducing molecules from mitochondria and/or metabolic failure. Current methods to assess this outer membrane damage are mostly indirect or scarcely representative of the overall mitochondrial population. Here we present an analytical and preparative approach using free flow electrophoresis to directly distinguish rat liver mitochondria that have undergone the permeability transition from unaffected organelles or from organelles that are damaged to a minor degree. Mitochondrial populations, which considerably differ in outer membrane integrity or cytochrome c content, were separated by this means. We further show that the relative abundance of each population depends on the dose of the permeability transition inducer and the duration of the treatment time. Finally, we have employed this approach to investigate the impairment of mitochondria that were isolated from livers subjected to ischemia/reperfusion damage.


Assuntos
Eletroforese/métodos , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/fisiologia , Membranas Mitocondriais/química , Membranas Mitocondriais/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Eletroforese/instrumentação , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Ratos , Ratos Sprague-Dawley
17.
Nat Med ; 13(1): 54-61, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17187072

RESUMO

Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.


Assuntos
Apoptose/imunologia , Calreticulina/imunologia , Neoplasias do Colo/metabolismo , Animais , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Antígenos de Diferenciação/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Calreticulina/genética , Calreticulina/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Células Dendríticas/imunologia , Eletroforese em Gel Bidimensional , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Immunoblotting , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Fagocitose/imunologia , Proteína Fosfatase 1 , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Proteínas Recombinantes/farmacologia
18.
Oncogene ; 24(51): 7503-13, 2005 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16091749

RESUMO

1-(2-Chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195) is a prototypic ligand of the peripheral benzodiazepine receptor (PBR), a mitochondrial outer membrane protein. PK11195 can be used to chemosensitize tumor cells to a variety of chemotherapeutic agents, both in vitro and in vivo. PK11195 has been suggested to exert this effect via inhibition of the multiple drug resistance (MDR) pump and by direct mitochondrial effects which could be mediated by the PBR. Here, we established a model system in which PK11195 and another PBR ligand, 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864), sensitize to nutrient depletion-induced cell death. In this MDR-independent model, PK11195 and Ro5-4864 are fully active even when the PBR is knocked down by small interfering RNA. Cells that lack PBR possess low-affinity binding sites for PK11195 and Ro5-4864. The starvation-sensitizing effects of PK11195 are not due to a modulation of the adaptive response of starved cells, namely autophagy and NF-kappaB activation. Rather, it appears that the combination of PK11195 with autophagy or NF-kappaB inhibitors has a potent synergistic death-inducing effect. Starved cells treated with PK11195 exhibit characteristics of apoptosis, including loss of the mitochondrial transmembrane potential, mitochondrial cytochrome c release, caspase activation and chromatin condensation. Accordingly, stabilization of mitochondria by overexpression of Bcl-2 or expression of the viral mitochondrial inhibitor (vMIA) from cytomegalovirus inhibits cell death induced by PK11195 plus starvation. Thus, PK11195 potently sensitizes to apoptosis via a pathway that involves mitochondria, yet does not involve the PBR.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Isoquinolinas/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Benzodiazepinonas/farmacologia , Caspases/metabolismo , Cromatina/metabolismo , Citocromos c/metabolismo , Células HeLa , Humanos , Hipolipemiantes/farmacologia , Ligantes , Potenciais da Membrana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , NF-kappa B/antagonistas & inibidores , RNA Interferente Pequeno , Receptores de GABA-A/fisiologia
19.
J Cell Sci ; 118(Pt 14): 3091-102, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15985464

RESUMO

Autophagic cell death is morphologically characterized by an accumulation of autophagic vacuoles. Here, we show that inactivation of LAMP2 by RNA interference or by homologous recombination leads to autophagic vacuolization in nutrient-depleted cells. Cells that lack LAMP2 expression showed an enhanced accumulation of vacuoles carrying the marker LC3, yet a decreased colocalization of LC3 and lysosomes, suggesting that the fusion between autophagic vacuoles and lysosomes was inhibited. While a fraction of mitochondria from starved LAMP2-expressing cells colocalized with lysosomal markers, within autophagolysosomes, no such colocalization was found on removal of LAMP2 from the experimental system. Of note, LAMP1 depletion had no such effects and did not aggravate the phenotype induced by LAMP2-specific small interfering RNA. Serum and amino acid-starved LAMP2-negative cells exhibited an accumulation of autophagic vacuoles and then succumbed to cell death with hallmarks of apoptosis such as loss of the mitochondrial transmembrane potential, caspase activation and chromatin condensation. While caspase inhibition retarded cell death, it had no protective effect on mitochondria. Stabilization of mitochondria by overexpression of Bcl-2 or the mitochondrion-targeted cytomegalovirus protein vMIA, however, blocked all signs of apoptosis. Neither caspase inhibition nor mitochondrial stabilization antagonized autophagic vacuolization in LAMP2-deficient cells. Altogether, these data indicate that accumulation of autophagic vacuoles can precede apoptotic cell death. These findings argue against the clear-cut distinction between type 1 (apoptotic) and type 2 (autophagic) cell death.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Membrana Lisossomal/deficiência , Vacúolos/fisiologia , Western Blotting , Linhagem Celular , Citometria de Fluxo , Imunofluorescência , Células HeLa , Humanos , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/biossíntese , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Microscopia Eletrônica , Microscopia de Polarização , Interferência de RNA , Transfecção , Vacúolos/metabolismo
20.
Mol Cell Biol ; 25(3): 1025-40, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15657430

RESUMO

Mammalian cells were observed to die under conditions in which nutrients were depleted and, simultaneously, macroautophagy was inhibited either genetically (by a small interfering RNA targeting Atg5, Atg6/Beclin 1-1, Atg10, or Atg12) or pharmacologically (by 3-methyladenine, hydroxychloroquine, bafilomycin A1, or monensin). Cell death occurred through apoptosis (type 1 cell death), since it was reduced by stabilization of mitochondrial membranes (with Bcl-2 or vMIA, a cytomegalovirus-derived gene) or by caspase inhibition. Under conditions in which the fusion between lysosomes and autophagosomes was inhibited, the formation of autophagic vacuoles was enhanced at a preapoptotic stage, as indicated by accumulation of LC3-II protein, ultrastructural studies, and an increase in the acidic vacuolar compartment. Cells exhibiting a morphology reminiscent of (autophagic) type 2 cell death, however, recovered, and only cells with a disrupted mitochondrial transmembrane potential were beyond the point of no return and inexorably died even under optimal culture conditions. All together, these data indicate that autophagy may be cytoprotective, at least under conditions of nutrient depletion, and point to an important cross talk between type 1 and type 2 cell death pathways.


Assuntos
Adenina/análogos & derivados , Apoptose/fisiologia , Autofagia/fisiologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Fagossomos/metabolismo , Adenina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Inibidores de Caspase , Caspases/metabolismo , Células Cultivadas , Inibidores Enzimáticos/toxicidade , Células HeLa , Humanos , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Monensin/toxicidade , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...