Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056578

RESUMO

Microbial communities play an important role in shallow terrestrial subsurface ecosystems. Most studies of this habitat have focused on planktonic communities that are found in the groundwater of aquifer systems and only target specific microbial groups. Therefore, a systematic understanding of the processes that govern the assembly of endolithic and sessile communities is still missing. This study aims to understand the effect of depth and biotic factors on these communities, to better unravel their origins and to compare their composition with the communities detected in groundwater. To do so, we collected samples from two profiles (~0-50 m) in aquifer sites in the Laurentians (Quebec, Canada), performed DNA extractions and Illumina sequencing. The results suggest that changes in geological material characteristics with depth represent a strong ecological and phylogenetical filter for most archaeal and bacterial communities. Additionally, the vertical movement of water from the surface plays a major role in shallow subsurface microbial assembly processes. Furthermore, biotic interactions between bacteria and eukaryotes were mostly positive which may indicate cooperative or mutualistic potential associations, such as cross-feeding and/or syntrophic relationships in the terrestrial subsurface. Our results also point toward the importance of sampling both the geological formation and groundwater when it comes to studying its overall microbiology.

2.
J Environ Qual ; 48(2): 352-361, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30951125

RESUMO

Riparian buffer strips (RBS) are encouraged to control agricultural diffuse pollution. In Quebec Province, Canada, a policy promotes 3-m-wide RBS. Abiding farmers minimally maintain herbaceous vegetation, but nutrient retention efficiency could be improved with woody biomass. This work aimed to assess if fast-growing willows ( Seemen 'SX64') could reduce nutrient loads to a stream, in addition to yielding biomass. Triplicate treatments of two stem densities and a herbaceous control plot were monitored from 2011 to 2013 in a randomized block design on agricultural fields of the St. Lawrence Lowlands with sandy loam (Saint-Roch-de-l'Achigan [SR]) and organic-rich (Boisbriand [BB]) soils. Runoff, interstitial water, and water from the saturated zone were sampled 16 (SR) and 14 (BB) times to quantify nutrient buffering (NO, NH, P, and K). Sampling campaigns followed (i) snowmelt or ≥15-mm natural precipitation events after (ii) fertilization and (iii) glyphosate-based herbicide applications. Concentration reduction before and after the RBS was highest for nitrates (77-81% in runoff at BB, 92-98% at 35- to 70-cm depth at SR) just after fertilization, when edge-of-field concentrations peaked. Total P removal was observed in runoff after fertilization at SR, and K removal was punctually witnessed at BB. Riparian buffer strips were inefficient for NH and dissolved P removal, and RBS effluents exceeded aquatic life protection standards. plantations, irrespective of stem density, were not more efficient than herbaceous RBS. This shows that without fertilizer input reductions, narrow RBS are insufficient to protect streams from excess nutrients in corn ( L.) and soybean [ (L.) Merr.] crops.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Nitrogênio/análise , Poluição Difusa/prevenção & controle , Fósforo/análise , Agricultura , Poluição Difusa/análise , Poaceae , Quebeque , Salix , Glycine max , Zea mays
3.
Sci Total Environ ; 579: 557-568, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27871751

RESUMO

There is growing concern worldwide about the exposure of groundwater resources to pharmaceutically active compounds (PhACs) and agricultural contaminants, such as pesticides, nitrate, and Escherichia coli. For regions with a low population density and an abundance of water, regional contamination assessments are not carried out systematically due to the typically low concentrations and high costs of analyses. The objectives of this study were to evaluate regional-scale contaminant distributions in untreated groundwater in a rural region of Quebec (Canada). The geological and hydrogeological settings of this region are typical of post-glacial regions around the world, where groundwater flow can be complex due to heterogeneous geological conditions. A new spatially distributed Anthropogenic Footprint Index (AFI), based on land use data, was developed to assess surface pollution risks. The Hydrogeochemical Vulnerability Index (HVI) was computed to estimate aquifer vulnerability. Nine wells had detectable concentrations of one to four of the 13 tested PhACs, with a maximum concentration of 116ng·L-1 for benzafibrate. A total of 34 of the 47 tested pesticides were detected in concentrations equal to or greater than the detection limit, with a maximum total pesticide concentration of 692ng·L-1. Nitrate concentrations exceeded 1mg·L-1 N-NO3 in 15.3% of the wells, and the Canadian drinking water standard was exceeded in one well. Overall, 13.5% of the samples had detectable E. coli. Including regional-scale sources of pollutants to the assessment of aquifer vulnerability with the AFI did not lead to the identification of contaminated wells, due to the short groundwater flow paths between recharge and the sampled wells. Given the occurrence of contaminants, the public health concerns stemming from these new data on regional-scale PhAC and pesticide concentrations, and the local flow conditions observed in post-glacial terrains, there is a clear need to investigate the sources and behaviours of local-scale pollutants.


Assuntos
Monitoramento Ambiental , Escherichia coli/crescimento & desenvolvimento , Nitratos/análise , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água Subterrânea/microbiologia , Quebeque
4.
J Environ Radioact ; 164: 344-353, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27552658

RESUMO

Peatlands can play an important role in the hydrological dynamics of a watershed. However, interactions between groundwater and peat water remain poorly understood. Here, we present results of an exploratory study destined to test radon (222Rn) as a potential tracer of groundwater inflows from fluvioglacial landform aquifers to slope peatlands in the Amos region of Quebec, Canada. 222Rn occurs in groundwater but is expected to be absent from peat water because of its rapid degassing to the atmosphere. Any 222Rn activity detected in peat water should therefore derive from groundwater inflow. 222Rn activity was measured in groundwater from municipal, domestic wells and newly drilled and instrumented piezometers from the Saint-Mathieu-Berry and Barraute eskers (n = 9), from the Harricana Moraine (n = 4), and from the fractured bedrock (n = 3). Forty measurements of 222Rn activity were made from piezometers installed in five slope peatlands, along six transects oriented perpendicular to the fluvioglacial deposits. The relationship between 222Rn and total dissolved solids (TDS) measured in water from the mineral deposits underlying the peat layer suggests that 222Rn is introduced by lateral inflow from eskers and moraine together with salinity. This input is then diluted by peat water, depleted in both TDS and 222Rn. The fact that a relationship between TDS and 222Rn is visible calls for a continuous inflow of groundwater from lateral eskers/moraines, being 222Rn rapidly removed from the system by radioactive decay. Although more research is required to improve the sampling and tracing techniques, this work shows the potential of 222Rn tracer to identify groundwater inflow areas from granular aquifers found in eskers and moraines to slope peatlands.


Assuntos
Água Subterrânea/química , Monitoramento de Radiação , Radônio/análise , Poluentes Radioativos da Água/análise , Quebeque , Solo , Poços de Água
5.
Sci Total Environ ; 566-567: 1329-1338, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27267724

RESUMO

The increasing number of studies on the determination of natural methane in groundwater of shale gas prospection areas offers a unique opportunity for refining the quantification of natural methane emissions. Here methane emissions, computed from four potential sources, are reported for an area of ca. 16,500km(2) of the St. Lawrence Lowlands, Quebec (Canada), where Utica shales are targeted by the petroleum industry. Methane emissions can be caused by 1) groundwater degassing as a result of groundwater abstraction for domestic and municipal uses; 2) groundwater discharge along rivers; 3) migration to the surface by (macro- and micro-) diffuse seepage; 4) degassing of hydraulic fracturing fluids during first phases of drilling. Methane emissions related to groundwater discharge to rivers (2.47×10(-4) to 9.35×10(-3)Tgyr(-1)) surpass those of diffuse seepage (4.13×10(-6) to 7.14×10(-5)Tgyr(-1)) and groundwater abstraction (6.35×10(-6) to 2.49×10(-4)Tgyr(-1)). The methane emission from the degassing of flowback waters during drilling of the Utica shale over a 10- to 20-year horizon is estimated from 2.55×10(-3) to 1.62×10(-2)Tgyr(-1). These emissions are from one third to sixty-six times the methane emissions from groundwater discharge to rivers. This study shows that different methane emission sources need to be considered in environmental assessments of methane exploitation projects to better understand their impacts.


Assuntos
Água Subterrânea/análise , Metano/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Quebeque
6.
Environ Sci Technol ; 49(7): 4765-71, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751654

RESUMO

Hydraulic fracturing is becoming an important technique worldwide to recover hydrocarbons from unconventional sources such as shale gas. In Quebec (Canada), the Utica Shale has been identified as having unconventional gas production potential. However, there has been a moratorium on shale gas exploration since 2010. The work reported here was aimed at defining baseline concentrations of methane in shallow aquifers of the St. Lawrence Lowlands and its sources using δ(13)C methane signatures. Since this study was performed prior to large-scale fracturing activities, it provides background data prior to the eventual exploitation of shale gas through hydraulic fracturing. Groundwater was sampled from private (n = 81), municipal (n = 34), and observation (n = 15) wells between August 2012 and May 2013. Methane was detected in 80% of the wells with an average concentration of 3.8 ± 8.8 mg/L, and a range of <0.0006 to 45.9 mg/L. Methane concentrations were linked to groundwater chemistry and distance to the major faults in the studied area. The methane δ(1)(3)C signature of 19 samples was > -50‰, indicating a potential thermogenic source. Localized areas of high methane concentrations from predominantly biogenic sources were found throughout the study area. In several samples, mixing, migration, and oxidation processes likely affected the chemical and isotopic composition of the gases, making it difficult to pinpoint their origin. Energy companies should respect a safe distance from major natural faults in the bedrock when planning the localization of hydraulic fracturation activities to minimize the risk of contaminating the surrounding groundwater since natural faults are likely to be a preferential migration pathway for methane.


Assuntos
Água Subterrânea/química , Metano/análise , Campos de Petróleo e Gás , Alcanos/análise , Canadá , Isótopos de Carbono/análise , Monitoramento Ambiental , Gases , Hidrocarbonetos , Quebeque
7.
Environ Manage ; 54(5): 1056-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25195034

RESUMO

River systems are increasingly under stress and pressure from agriculture and urbanization in riparian zones, resulting in frequent engineering interventions such as bank stabilization or flood protection. This study provides guidelines for a more sustainable approach to river management based on hydrogeomorphology concepts applied to three contrasted rivers in Quebec (Canada). Mobility and flooding spaces are determined for the three rivers, and three levels of "freedom space" are subsequently defined based on the combination of the two spaces. The first level of freedom space includes very frequently flooded and highly mobile zones over the next 50 years, as well as riparian wetlands. It provides the minimum space for both fluvial and ecological functionality of the river system. On average for the three studied sites, this minimum space was approximately 1.7 times the channel width, but this minimum space corresponds to a highly variable width which must be determined from a thorough hydrogeomorphic assessment and cannot be predicted using a representative average. The second level includes space for floods of larger magnitude and provides for meanders to migrate freely over a longer time period. The last level of freedom space represents exceptional flood zones. We propose the freedom space concept to be implemented in current river management legislation because it promotes a sustainable way to manage river systems, and it increases their resilience to climate and land use changes in comparison with traditional river management approaches which are based on frequent and spatially restricted interventions.


Assuntos
Clima , Conservação dos Recursos Naturais/métodos , Inundações/classificação , Modelos Teóricos , Rios , Áreas Alagadas , Conservação dos Recursos Naturais/tendências , Geografia , Quebeque
8.
J Environ Radioact ; 136: 206-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973780

RESUMO

One hundred ninety-eight groundwater wells were sampled to measure the (222)Rn activity in the region between Montreal and Quebec City, eastern Canada. The aim of this study was to relate the spatial distribution of (222)Rn activity to the geology and the hydrogeology of the study area and to estimate the potential health risks associated with (222)Rn in the most populated area of the Province of Quebec. Most of the groundwater samples show low (222)Rn activities with a median value of 8.6 Bq/L. Ninety percent of samples show (222)Rn activity lower than 100 Bq/L, the exposure limit in groundwater recommended by the World Health Organization. A few higher (222)Rn activities (up to 310 Bq/L) have been measured in wells from the Appalachian Mountains and from the magmatic intrusion of Mont-Saint-Hilaire, known for its high level of indoor radon. The spatial distribution of (222)Rn activity seems to be related mainly to lithology differences between U-richer metasediments of the Appalachian Mountains and magmatic intrusions and the carbonaceous silty shales of the St. Lawrence Platform. Radon is slightly enriched in sodium-chlorine waters that evolved at contact with clay-rich formations. (226)Ra, the parent element of (222)Rn could be easily adsorbed on clays, creating a favorable environment for the production and release of (222)Rn into groundwater. The contribution of groundwater radon to indoor radon or by ingestion is minimal except for specific areas near Mont-Saint-Hilaire or in the Appalachian Mountains where this contribution could reach 45% of the total radioactive annual dose.


Assuntos
Exposição Ambiental , Água Subterrânea/análise , Monitoramento de Radiação , Radônio/análise , Poluentes Radioativos da Água/análise , Mapeamento Geográfico , Humanos , Quebeque , Contagem de Cintilação , Análise Espacial , Poços de Água/análise
9.
Ground Water ; 47(6): 786-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563420

RESUMO

Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration-time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.


Assuntos
Água Subterrânea , Hidrologia/métodos , Viés , Monitoramento Ambiental/métodos , Meia-Vida , Modelos Teóricos , Incerteza , Movimentos da Água
10.
C R Biol ; 332(8): 720-31, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19632655

RESUMO

Although ombrotrophic temperate peatlands are important ecosystems for maintaining biodiversity in eastern North America, the environmental factors influencing their flora are only partly understood. The relationships between plant species distribution and environmental factors were thus studied within the oldest temperate peatland of Québec. Plant assemblages were identified by cluster analysis while CCA was used to related vegetation gradients to environmental factors. Five assemblages were identified; three typical of open bog and two characterized by more minerotrophic vegetation. Thicker peat deposit was encounter underlying the bog assemblages while higher water table level and percentage of free surface water distinguished the minerotrophic assemblages. Overall, the floristic patterns observed were spatially structured along the margins and the expanse. The most important environmental factors explaining this spatial gradient were the percentage of free surface water and the highest water-table level.


Assuntos
Clima , Plantas , Briófitas , Ecossistema , Conceitos Meteorológicos , Plantas/classificação , Quebeque , Árvores/classificação , Abastecimento de Água
11.
Ground Water ; 41(1): 15-23, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12533071

RESUMO

Inverse modeling is a useful tool in ground water flow modeling studies. The most frequent difficulties encountered when using this technique are the lack of conditioning information (e.g., heads and transmissivities), the uncertainty in available data, and the nonuniqueness of the solution. These problems can be addressed and quantified through a stochastic Monte Carlo approach. The aim of this work was to compare the applicability of two stochastic inverse modeling approaches in a field-scale application. The multi-scaling (MS) approach uses a downscaling parameterization procedure that is not based on geostatistics. The pilot point (PP) approach uses geostatistical random fields as initial transmissivity values and an experimental variogram to condition the calibration. The studied area (375 km2) is part of a regional aquifer, northwest of Montreal in the St. Lawrence lowlands (southern Québec). It is located in limestone, dolomite, and sandstone formations, and is mostly a fractured porous medium. The MS approach generated small errors on heads, but the calibrated transmissivity fields did not reproduce the variogram of observed transmissivities. The PP approach generated larger errors on heads but better reproduced the spatial structure of observed transmissivities. The PP approach was also less sensitive to uncertainty in head measurements. If reliable heads are available but no transmissivities are measured, the MS approach provides useful results. If reliable transmissivities with a well inferred spatial structure are available, then the PP approach is a better alternative. This approach however must be used with caution if measured transmissivities are not reliable.


Assuntos
Modelos Teóricos , Processos Estocásticos , Movimentos da Água , Abastecimento de Água , Calibragem , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...