Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 21(6): 791-803, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37721188

RESUMO

Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0 ) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S0 in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%-26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0 disproportionation in pure culture. Gibbs energy (∆Gr ) calculations revealed that S0 disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0 generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments.

2.
ISME J ; 17(11): 1828-1838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596411

RESUMO

Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.


Assuntos
Euryarchaeota , Sedimentos Geológicos , Filogenia , Euryarchaeota/genética , Metano/metabolismo , RNA Ribossômico 16S
3.
Proc Natl Acad Sci U S A ; 120(34): e2210924120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579147

RESUMO

The origin and early evolution of life is generally studied under two different paradigms: bottom up and top down. Prebiotic chemistry and early Earth geochemistry allow researchers to explore possible origin of life scenarios. But for these "bottom-up" approaches, even successful experiments only amount to a proof of principle. On the other hand, "top-down" research on early evolutionary history is able to provide a historical account about ancient organisms, but is unable to investigate stages that occurred during and just after the origin of life. Here, we consider ancient electron transport chains (ETCs) as a potential bridge between early evolutionary history and a protocellular stage that preceded it. Current phylogenetic evidence suggests that ancestors of several extant ETC components were present at least as late as the last universal common ancestor of life. In addition, recent experiments have shown that some aspects of modern ETCs can be replicated by minerals, protocells, or organic cofactors in the absence of biological proteins. Here, we discuss the diversity of ETCs and other forms of chemiosmotic energy conservation, describe current work on the early evolution of membrane bioenergetics, and advocate for several lines of research to enhance this understanding by pairing top-down and bottom-up approaches.


Assuntos
Fenômenos Bioquímicos , Filogenia , Transporte de Elétrons , Proteínas/química , Metabolismo Energético , Origem da Vida , Evolução Biológica , Evolução Molecular
4.
Astrobiology ; 23(4): 431-445, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36862508

RESUMO

Putative alkaline hydrothermal systems on Noachian Mars were potentially habitable environments for microorganisms. However, the types of reactions that could have fueled microbial life in such systems and the amount of energy available from them have not been quantitatively constrained. In this study, we use thermodynamic modeling to calculate which catabolic reactions could have supported ancient life in a saponite-precipitating hydrothermal vent system in the Eridania basin on Mars. To further evaluate what this could mean for microbial life, we evaluated the energy potential of an analog site in Iceland, the Strytan Hydrothermal Field. Results show that, of the 84 relevant redox reactions that were considered, the highest energy-yielding reactions in the Eridania hydrothermal system were dominated by methane formation. By contrast, Gibbs energy calculations carried out for Strytan indicate that the most energetically favorable reactions are CO2 and O2 reduction coupled to H2 oxidation. In particular, our calculations indicate that an ancient hydrothermal system within the Eridania basin could have been a habitable environment for methanogens using NH4+ as an electron acceptor. Differences in Gibbs energies between the two systems were largely determined by oxygen-its presence on Earth and absence on Mars. However, Strytan can serve as a useful analog for Eridania when studying methane-producing reactions that do not involve O2.


Assuntos
Fontes Hidrotermais , Marte , Oxirredução , Termodinâmica , Metano/metabolismo , Islândia
5.
Nat Commun ; 13(1): 7297, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435937

RESUMO

Quantifying the organic carbon (OC) sink in marine sediments is crucial for assessing how the marine carbon cycle regulates Earth's climate. However, burial efficiency (BE) - the commonly-used metric reporting the percentage of OC deposited on the seafloor that becomes buried (beyond an arbitrary and often unspecified reference depth) - is loosely defined, misleading, and inconsistent. Here, we use a global diagenetic model to highlight orders-of-magnitude differences in sediment ages at fixed sub-seafloor depths (and vice-versa), and vastly different BE's depending on sediment depth or age horizons used to calculate BE. We propose using transfer efficiencies (Teff's) for quantifying sediment OC burial: Teff is numerically equivalent to BE but requires precise specification of spatial or temporal references, and emphasizes that OC degradation continues beyond these horizons. Ultimately, quantifying OC burial with precise sediment-depth and sediment-age-resolved metrics will enable a more consistent and transferable assessment of OC fluxes through the Earth system.


Assuntos
Carbono , Sedimentos Geológicos , Ciclo do Carbono , Sequestro de Carbono , Planeta Terra
6.
Front Microbiol ; 13: 910694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875517

RESUMO

Marine sediments comprise one of the largest microbial habitats and organic carbon sinks on the planet. However, it is unclear how variations in sediment physicochemical properties impact microorganisms on a global scale. Here we investigate patterns in the distribution of microbial cells, organic carbon, and the amounts of power used by microorganisms in global sediments. Our results show that sediment on continental shelves and margins is predominantly anoxic and contains cells whose power utilization decreases with sediment depth and age. Sediment in abyssal zones contains microbes that use low amounts of power on a per cell basis, across large gradients in sediment depth and age. We find that trends in cell abundance, POC storage and degradation, and microbial power utilization are mainly structured by depositional setting and redox conditions, rather than sediment depth and age. We also reveal distinct trends in per-cell power regime across different depositional settings, from maxima of ∼10-16 W cell-1 in recently deposited shelf sediments to minima of <10-20 W cell-1 in deeper and ancient sediments. Overall, we demonstrate broad global-scale connections between the depositional setting and redox conditions of global sediment, and the amounts of organic carbon and activity of deep biosphere microorganisms.

7.
Astrobiology ; 22(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591607

RESUMO

Life emerged in a geochemical context, possibly in the midst of mineral substrates. However, it is not known to what extent minerals and dissolved inorganic ions could have facilitated the evolution of biochemical reactions. Herein, we have experimentally shown that iron sulfide minerals can act as electron transfer agents for the reduction of the ubiquitous biological protein cofactor nicotinamide adenine dinucleotide (NAD+) under anaerobic prebiotic conditions, observing the NAD+/NADH redox transition by using ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance. This reaction was mediated with iron sulfide minerals, which were likely abundant on early Earth in seafloor and hydrothermal settings; and the NAD+/NADH redox reaction occurred in the absence of UV light, peptide ligand(s), or dissolved mediators. To better understand this reaction, thermodynamic modeling was also performed. The ability of an iron sulfide mineral to transfer electrons to a biochemical cofactor that is found in every living cell demonstrates how geologic materials could have played a direct role in the evolution of certain cofactor-driven metabolic pathways.


Assuntos
Ferro , NAD , Ferro/metabolismo , Minerais , NAD/química , NAD/metabolismo , Oxirredução , Enxofre
8.
mSystems ; : e0027621, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184914

RESUMO

Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria. Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus ("Candidatus Halomarinus"), sister to Litoricola, comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 µm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some "Ca. Halomarinus" organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria, has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world's oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly "heterotrophic" taxa.

9.
Front Microbiol ; 12: 636145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177823

RESUMO

Microorganisms are found in nearly every surface and near-surface environment, where they gain energy by catalyzing reactions among a wide variety of chemical compounds. The discovery of new catabolic strategies and microbial habitats can therefore be guided by determining which redox reactions can supply energy under environmentally-relevant conditions. In this study, we have explored the thermodynamic potential of redox reactions involving manganese, one of the most abundant transition metals in the Earth's crust. In particular, we have assessed the Gibbs energies of comproportionation and disproportionation reactions involving Mn2+ and several Mn-bearing oxide and oxyhydroxide minerals containing Mn in the +II, +III, and +IV oxidation states as a function of temperature (0-100°C) and pH (1-13). In addition, we also calculated the energetic potential of Mn2+ oxidation coupled to O2, NO2 -, NO3 -, and FeOOH. Results show that these reactions-none of which, except O2 + Mn2+, are known catabolisms-can provide energy to microorganisms, particularly at higher pH values and temperatures. Comproportionation between Mn2+ and pyrolusite, for example, can yield 10 s of kJ (mol Mn)-1. Disproportionation of Mn3+ can yield more than 100 kJ (mol Mn)-1 at conditions relevant to natural settings such as sediments, ferromanganese nodules and crusts, bioreactors and suboxic portions of the water column. Of the Mn2+ oxidation reactions, the one with nitrite as the electron acceptor is most energy yielding under most combinations of pH and temperature. We posit that several Mn redox reactions represent heretofore unknown microbial metabolisms.

10.
Nat Microbiol ; 6(2): 246-256, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398096

RESUMO

Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world.


Assuntos
Bactérias/enzimologia , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Microbiota , Microbiologia do Solo , Solo , Bactérias/classificação , Bactérias/genética , Metagenômica , Oxirredução , Filogenia
11.
PLoS One ; 15(6): e0234175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502166

RESUMO

Shallow-sea hydrothermal systems, like their deep-sea and terrestrial counterparts, can serve as relatively accessible portals into the microbial ecology of subsurface environments. In this study, we determined the chemical composition of 47 sediment porewater samples along a transect from a diffuse shallow-sea hydrothermal vent to a non-thermal background area in Paleochori Bay, Milos Island, Greece. These geochemical data were combined with thermodynamic calculations to quantify potential sources of energy that may support in situ chemolithotrophy. The Gibbs energies (ΔGr) of 730 redox reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As-bearing compounds were calculated. Of these reactions, 379 were exergonic at one or more sampling locations. The greatest energy yields were from anaerobic CO oxidation with NO2- (-136 to -162 kJ/mol e-), followed by reactions in which the electron acceptor/donor pairs were O2/CO, NO3-/CO, and NO2-/H2S. When expressed as energy densities (where the concentration of the limiting reactant is taken into account), a different set of redox reactions are the most exergonic: in sediments affected by hydrothermal input, sulfide oxidation with a range of electron acceptors or nitrite reduction with different electron donors provide 85~245 J per kg of sediment, whereas in sediments less affected or unaffected by hydrothermal input, various S0 oxidation reactions and aerobic respiration reactions with several different electron donors are most energy-yielding (80~95 J per kg of sediment). A model that considers seawater mixing with hydrothermal fluids revealed that there is up to ~50 times more energy available for microorganisms that can use S0 or H2S as electron donors and NO2- or O2 as electron acceptors compared to other reactions. In addition to revealing likely metabolic pathways in the near-surface and subsurface mixing zones, thermodynamic calculations like these can help guide novel microbial cultivation efforts to isolate new species.


Assuntos
Metabolismo Energético , Fontes Hidrotermais , Grécia , Fontes Hidrotermais/microbiologia , Ilhas , Termodinâmica
12.
Environ Microbiol ; 22(6): 1971-1976, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157786

RESUMO

Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation-reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism - sulfur comproportionation (3H2 S + SO 4 2 - + 2H+ ⇌ 4S0 + 4H2 O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30-50 kJ mol-1 . We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2 S + SO 4 2 - ⇌ S 2 O 3 2 - + H2 O) and to sulfite (H2 S + 3 SO 4 2 - ⇌ 4 SO 3 2 - + 2H+ ), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid-sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.


Assuntos
Bactérias/metabolismo , Crescimento Quimioautotrófico/fisiologia , Metabolismo Energético/fisiologia , Enxofre/metabolismo , Fontes Hidrotermais/química , Oxirredução , Sulfatos , Temperatura , Termodinâmica
13.
Orig Life Evol Biosph ; 50(1-2): 35-55, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981046

RESUMO

Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein cofactors acted as catalysts prior to the evolution of the protein enzymes with which they are now associated. We investigated the stability of acetyl coenzyme A (Acetyl Co-A, the group transfer cofactor in citric acid synthesis in the TCA cycle) under early Earth conditions, as well as whether Acetyl Co-A or its small molecule analogs thioacetate or acetate can catalyze the transfer of an acetyl group onto oxaloacetate in the absence of the citrate synthase enzyme. Several different temperatures, pH ranges, and compositions of aqueous environments were tested to simulate the Earth's early ocean and its possible components; the effect of these variables on oxaloacetate and cofactor chemistry were assessed under ambient and anoxic conditions. The cofactors tested are chemically stable under early Earth conditions, but none of the three compounds (Acetyl Co-A, thioacetate, or acetate) promoted synthesis of citric acid from oxaloacetate under the conditions tested. Oxaloacetate reacted with itself and/or decomposed to form a sequence of other products under ambient conditions, and under anoxic conditions was more stable; under ambient conditions the specific chemical pathways observed depended on the environmental conditions such as pH and presence/absence of bicarbonate or salt ions in early Earth ocean simulants. This work demonstrates the stability of these metabolic intermediates under anoxic conditions. However, even though free cofactors may be stable in a geological environmental setting, an enzyme or other mechanism to promote reaction specificity would likely be necessary for at least this particular reaction to proceed.


Assuntos
Acetatos/química , Acetilcoenzima A/química , Citrato (si)-Sintase/química , Ácido Oxaloacético/química , Compostos de Sulfidrila/química , Catálise , Planeta Terra
14.
Environ Microbiol ; 21(10): 3539-3547, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31403238

RESUMO

The biology literature is rife with misleading information on how to quantify catabolic reaction energetics. The principal misconception is that the sign and value of the standard Gibbs energy ( Δ G r 0 ) define the direction and energy yield of a reaction; they do not. Δ G r 0 is one part of the actual Gibbs energy of a reaction (ΔGr ), with a second part accounting for deviations from the standard composition. It is also frequently assumed that Δ G r 0 applies only to 25 °C and 1 bar; it does not. Δ G r 0 is a function of temperature and pressure. Here, we review how to determine ΔGr as a function of temperature, pressure and chemical composition for microbial catabolic reactions, including a discussion of the effects of ionic strength on ΔGr and highlighting the large effects when multi-valent ions are part of the reaction. We also calculate ΔGr for five example catabolisms at specific environmental conditions: aerobic respiration of glucose in freshwater, anaerobic respiration of acetate in marine sediment, hydrogenotrophic methanogenesis in a laboratory batch reactor, anaerobic ammonia oxidation in a wastewater reactor and aerobic pyrite oxidation in acid mine drainage. These examples serve as templates to determine the energy yields of other catabolic reactions at environmentally relevant conditions.


Assuntos
Bactérias/metabolismo , Ecossistema , Metabolismo Energético/fisiologia , Sedimentos Geológicos/microbiologia , Microbiologia da Água , Microbiologia Ambiental
15.
Geobiology ; 17(1): 43-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30248245

RESUMO

Microorganisms buried in marine sediments are known to endure starvation over geologic timescales. However, the mechanisms of how these microorganisms cope with prolonged energy limitation is unknown and therefore yet to be captured in a quantitative framework. Here, we present a novel mathematical model that considers (a) the physiological transitions between the active and dormant states of microorganisms, (b) the varying requirement for maintenance power between these phases, and (c) flexibility in the provenance (i.e., source) of energy from exogenous and endogenous catabolism. The model is applied to sediments underlying the oligotrophic South Pacific Gyre where microorganisms endure ultra-low fluxes of energy for tens of millions of years. Good fits between model simulations and measurements of cellular carbon and organic carbon concentrations are obtained and are interpreted as follows: (a) the unfavourable microbial habitat in South Pacific Gyre sediments triggers rapid mortality and a transition to dormancy; (b) there is minimal biomass growth, and organic carbon consumption is dominated by catabolism to support maintenance activities rather than new biomass synthesis; (c) the amount of organic carbon that microorganisms consume for maintenance activities is equivalent to approximately 2% of their carbon biomass per year; and (d) microorganisms must rely solely on exogenous rather than endogenous catabolism to persist in South Pacific Gyre sediments over long timescales. This leads us to the conclusion that under oligotrophic conditions, the fitness of an organism is determined by its ability to simply stay alive, rather than to grow. This modelling framework is designed to be flexible for application to other sites and habitats, and thus serves as a new quantitative tool for determining the habitability of and an ultimate limit for life in any environment.


Assuntos
Organismos Aquáticos/fisiologia , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Biomassa , Carbono/metabolismo , Ecossistema , Modelos Biológicos , Oceano Pacífico
16.
Front Microbiol ; 9: 180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487581

RESUMO

Marine sediments constitute one of the most energy-limited habitats on Earth, in which microorganisms persist over extraordinarily long timescales with very slow metabolisms. This habitat provides an ideal environment in which to study the energetic limits of life. However, the bioenergetic factors that can determine whether microorganisms will grow, lie dormant, or die, as well as the selective environmental pressures that determine energetic trade-offs between growth and maintenance activities, are not well understood. Numerical models will be pivotal in addressing these knowledge gaps. However, models rarely account for the variable physiological states of microorganisms and their demand for energy. Here, we review established modeling constructs for microbial growth rate, yield, maintenance, and physiological state, and then provide a new model that incorporates all of these factors. We discuss this new model in context with its future application to the marine subsurface. Understanding the factors that regulate cell death, physiological state changes, and the provenance of maintenance energy (i.e., endogenous versus exogenous metabolism), is crucial to the design of this model. Further, measurements of growth rate, growth yield, and basal metabolic activity will enable bioenergetic parameters to be better constrained. Last, biomass and biogeochemical rate measurements will enable model simulations to be validated. The insight provided from the development and application of new microbial modeling tools for marine sediments will undoubtedly advance the understanding of the minimum power required to support life, and the ecophysiological strategies that organisms utilize to cope under extreme energy limitation for extended periods of time.

17.
Front Microbiol ; 9: 109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449836

RESUMO

Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems.

18.
Front Microbiol ; 7: 454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092118

RESUMO

Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 1.2 nW ml(-1)) was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63°C) and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb) near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 h during a step-wise isothermal scan from 35.5 to 85.0°C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 × 10(4) cells ml(-1) FLUID) and their subsequent metabolic activity at temperatures greater than 50°C. The average cellular energy consumption (5.68 pW cell(-1)) reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8°C), relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 h as temperature ramped from 34.8 to 43.0°C. Corresponding cell-specific energy turnover rates (0.18 pW cell(-1)) were converted to oxygen uptake rates of 24.5 nmol O2 ml(-1) FLUID d(-1), validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

19.
ISME J ; 10(6): 1285-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26859771

RESUMO

The environmental conditions that describe an ecosystem define the amount of energy available to the resident organisms and the amount of energy required to build biomass. Here, we quantify the amount of energy required to make biomass as a function of temperature, pressure, redox state, the sources of C, N and S, cell mass and the time that an organism requires to double or replace its biomass. Specifically, these energetics are calculated from 0 to 125 °C, 0.1 to 500 MPa and -0.38 to +0.86 V using CO2, acetate or CH4 for C, NO3(-) or NH4(+) for N and SO4(2-) or HS(-) for S. The amounts of energy associated with synthesizing the biomolecules that make up a cell, which varies over 39 kJ (g cell)(-1), are then used to compute energy-based yield coefficients for a vast range of environmental conditions. Taken together, environmental variables and the range of cell sizes leads to a ~4 orders of magnitude difference between the number of microbial cells that can be made from a Joule of Gibbs energy under the most (5.06 × 10(11) cells J(-1)) and least (5.21 × 10(7) cells J(-1)) ideal conditions. When doubling/replacement time is taken into account, the range of anabolism energies can expand even further.


Assuntos
Metabolismo Energético , Metabolismo , Microbiologia , Biomassa , Ecossistema , Meio Ambiente , Modelos Teóricos , Oxirredução , Temperatura
20.
Environ Microbiol Rep ; 8(1): 150-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637109

RESUMO

Extreme thermal gradients and compressed metabolic zones limit the depth range of microbial colonization in hydrothermally active sediments at Guaymas Basin. We investigated the physicochemical characteristics of this ecosystem and their influence on microbial community structure. Temperature-related trends of δ(13)C values of methane and dissolved inorganic carbon from 36 sediment cores suggest in situ thermal limits for microbial anaerobic methane oxidation and organic carbon re-mineralization near 80°C and 100°C respectively. Temperature logging probes deposited in hydrothermal sediments for 8 days demonstrate substantial thermal fluctuations of up to 25°C. Putative anaerobic methanotroph (ANME) populations dominate the archaeal community, transitioning from ANME-1 archaea in warm surficial sediments towards ANME-1 Guaymas archaea as temperatures increase downcore. Since ANME archaea performing anaerobic oxidation of methane double on longer time scales (months) compared with relatively rapid in situ temperature fluctuations (hours to days), we conclude that ANME archaea possess a high tolerance for short-term shifts in the thermal regime.


Assuntos
Archaea/classificação , Biota , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Filogeografia , Temperatura , Anaerobiose , Archaea/genética , California , Carbono/análise , Metano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...