Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 7977, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846412

RESUMO

Graphene-based nanohybrids are good candidates for various applications. However, graphene exhibits some unwanted features such as low solubility in an aqueous solution or tendency to aggregate, limiting its potential applications. On the contrary, its derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have excellent properties and can be easily produced in large quantities. GO/RGO nanohybrids with porphyrins were shown to possess great potential in the field of photocatalytic hydrogen production, pollutant photodegradation, optical sensing, or drug delivery. Despite the rapid progress in experimental research on the porphyrin-graphene hybrids some fundamental questions about the structures and the interaction between components in these systems still remain open. In this work, we combine detailed experimental and theoretical studies to investigate the nature of the interaction between the GO/RGO and two metal-free porphyrins 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (TPPH)]. The two porphyrins form stable nanohybrids with GO/RGO support, although both porphyrins exhibited a slightly higher affinity to RGO. We validated finite, Lerf-Klinowski-type (Lerf et al. in J Phys Chem B 102:4477, 1998) structural models of GO ([Formula: see text]) and RGO ([Formula: see text]) and successfully used them in ab initio absorption spectra simulations to track back the origin of experimentally observed spectral features. We also investigated the nature of low-lying excited states with high-level wavefunction-based methods and shown that states' density becomes denser upon nanohybrid formation. The studied nanohybrids are non-emissive, and our study suggests that this is due to excited states that gain significant charge-transfer character. The presented efficient simulation protocol may ease the properties screening of new GO/RGO-nanohybrids.

2.
J Phys Chem C Nanomater Interfaces ; 124(29): 15769-15780, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-33133329

RESUMO

Two noncovalent nanohybrids between cationic porphyrin (free-base TMPyP and zinc(II) ZnTMPyP) bearing cationic (N-methylpyridyl) groups and graphene oxide (GO) were constructed with the aim of generating a photocatalyst active for rhodamine B (RhB) degradation. The obtained materials were thoroughly characterized by steady-state and time-resolved absorption and emission methods, which indicated that metalation of the porphyrin with Zn(II) increases the affinity of the porphyrin toward the GO surface. Photocurrent experiment together with femtosecond transient absorption spectroscopy clearly showed the existence of electron transfer from the photoexcited porphyrin to GO. Both hybrid materials demonstrated higher photocatalytic activity toward RhB degradation as compared to GO; however, ZnTMPyP-GO exhibited more efficient performance (19% of RhB decomposition after 2 h of irradiation). Our data indicate that the presence of Zn(II) in the core of the porphyrin can promote charge separation in the ZnTMPyP-GO composites. The higher degradation rate seen with ZnTMPyP-GO as compared to the TMPyP-GO assemblies highlights the beneficial role of Zn(II)-metalation of the porphyrin ring.

3.
Chemphyschem ; 20(8): 1054-1066, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30839147

RESUMO

Non-covalent nanohybrids composed of cationic 5,10,15,20-tetra(4-trimethylammoniophenyl)porphyrin tetra(p-toluenesulfonate) (TMAP) and the graphene oxide sheets were prepared under two pH values (6.2 vs. 1.8). The TMAP molecule was positively charged, regardless of the pH value during preparation. However, protonation of the imino nitrogens increased the overall charge of the porphyrin molecule from +4 to +6 (TMAP4+ and TMAP6+ ). It was found that at acidic pH, interaction of TMAP6+ with GO was largely suppressed. On the other hand, results of FTIR, Raman spectroscopy, thermogravimetric analysis, atomic force microscopy (AFM) and elemental analysis confirmed effective non-covalent functionalization of graphene oxide with cationic porphyrin at pH 6.2. The TMAP4+ -GO hybrids exhibited well defined structure with a monolayer of TMAP4+ on the GO sheets as confirmed by AFM. Formation of the ground-state TMAP4+ -GO complex in solution was monitored by the red-shift of the porphyrin Soret absorption band. This ground-state interaction between TMAP4+ and GO is responsible for the static quenching of the porphyrin emission. Fluorescence was not detected for the nanohybrid which indicated that a very fast deactivation process had to take place. Ultrafast time-resolved transient absorption spectroscopy clearly demonstrated the occurrence of electron transfer from the photoexcited TMAP4+ singlet state to GO sheets, as proven by the formation of a porphyrin radical cation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...