Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13436, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927416

RESUMO

Metal hydrides (MH) are known as one of the most suitable material groups for hydrogen energy storage because of their large hydrogen storage capacity, low operating pressure, and high safety. However, their slow hydrogen absorption kinetics significantly decreases storage performance. Faster heat removal from MH storage can play an essential role to enhance its hydrogen absorption rate, resulting in better storage performance. In this regard, the present study aims to improve heat transfer performance to positively impact the hydrogen absorption rate of MH storage systems. A novel semi-cylindrical coil is first designed and optimized for hydrogen storage and embedded as an internal heat exchanger with air as the heat transfer fluid (HTF). The effect of novel heat exchanger configurations is analyzed and compared with normal helical coil geometry, based on various pitch sizes. Furthermore, the operating parameters of MH storage and HTF are numerically investigated to obtain optimal values. ANSYS Fluent 2020 R2 is utilized for the numerical simulations. Results from this study demonstrate that MH storage performance is significantly improved by using a semi-cylindrical coil heat exchanger (SCHE). The hydrogen absorption duration reduces by 59% compared to a normal helical coil heat exchanger. The lowest coil pitch from SCHE leads to a 61% reduction of the absorption time. In terms of operating parameters for the MH storage with SCHE, all selected parameters provide a major improvement in the hydrogen absorption process, especially the inlet temperature of the HTF.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36012020

RESUMO

The depletion of air quality is a major problem that is faced around the globe. In Australia, the pollutants emitted by bushfires play an important role in making the air polluted. These pollutants in the air result in many adverse impacts on the environment. This paper analysed the air pollution from the bushfires from November 2019 to July 2020 and identified how it affects the human respiratory system. The bush fires burnt over 13 million hectares, destroying over 2400 buildings. While these immediate effects were devastating, the long-term effects were just as devastating, with air pollution causing thousands of people to be admitted to hospitals and emergency departments because of respiratory complications. The pollutant that caused most of the health effects throughout Australia was Particulate Matter (PM) PM2.5 and PM10. Data collection and analysis were covered in this paper to illustrate where and when PM2.5 and PM10, and other pollutants were at their most concerning levels. Susceptible areas were identified by analysing environmental factors such as temperature and wind speed. The study identified how these pollutants in the air vary from region to region in the same time interval. This study also focused on how these pollutant distributions vary according to the temperature, which helps to determine the relationship between the heatwave and air quality. A computational model for PM2.5 aerosol transport to the realistic airways was also developed to understand the bushfire exhaust aerosol transport and deposition in airways. This study would improve the knowledge of the heat wave and bushfire meteorology and corresponding respiratory health impacts.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Austrália , Monitoramento Ambiental , Temperatura Alta , Humanos , Meteorologia , New South Wales , Material Particulado/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-35457468

RESUMO

Genetic variants of severe acute respiratory syndrome coronavirus (SARS-CoV-2) have been globally surging and devastating many countries around the world. There are at least eleven reported variants dedicated with inevitably catastrophic consequences. In 2021, the most dominant Delta and Omicron variants were estimated to lead to more severity and deaths than other variants. Furthermore, these variants have some contagious characteristics involving high transmissibility, more severe illness, and an increased mortality rate. All outbreaks caused by the Delta variant have been rapidly skyrocketing in infection cases in communities despite tough restrictions in 2021. Apart from it, the United States, the United Kingdom and other high-rate vaccination rollout countries are still wrestling with this trend because the Delta variant can result in a significant number of breakthrough infections. However, the pandemic has changed since the latest SARS-CoV-2 variant in late 2021 in South Africa, Omicron. The preliminary data suggest that the Omicron variant possesses 100-fold greater than the Delta variant in transmissibility. Therefore, this paper aims to review these characteristics based on the available meta-data and information from the first emergence to recent days. Australia and the five most affected countries, including the United States, India, Brazil, France, as well as the United Kingdom, are selected in order to review the transmissibility, severity and fatality due to Delta and Omicron variants. Finally, the vaccination programs for each country are also reviewed as the main factor in prevention.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Pandemias , SARS-CoV-2/genética , Estados Unidos/epidemiologia
4.
Phys Fluids (1994) ; 33(8): 081911, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34552312

RESUMO

The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34207690

RESUMO

A comprehensive understanding of airflow characteristics and particle transport in the human lung can be useful in modelling to inform clinical diagnosis, treatment, and management, including prescription medication and risk assessment for rehabilitation. One of the difficulties in clinical treatment of lung disorders lies in the patients' variable physical lung characteristics caused by age, amongst other factors, such as different lung sizes. A precise understanding of the comparison between different age groups with various flow rates is missing in the literature, and this study aims to analyse the airflow and aerosol transport within the age-specific lung. ANSYS Fluent solver and the large-eddy simulation (LES) model were employed for the numerical simulation. The numerical model was validated with the available literature and the computational results showed airway size-reduction significantly affected airflow and particle transport in the upper airways. This study reports higher deposition at the mouth-throat region for larger diameter particles. The overall deposition efficiency (DE) increased with airway size reduction and flow rate. Lung aging effected the pressure distribution and a higher pressure drop was reported for the aged lung as compared to the younger lung. These findings could inform medical management through individualised simulation of drug-aerosol delivery processes for the patient-specific lung.


Assuntos
Pulmão , Modelos Biológicos , Administração por Inalação , Aerossóis , Fatores Etários , Idoso , Simulação por Computador , Humanos , Tamanho da Partícula
6.
Phys Fluids (1994) ; 33(6): 061903, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34149275

RESUMO

The recent outbreak of the SARS CoV-2 virus has had a significant effect on human respiratory health around the world. The contagious disease infected a large proportion of the world population, resulting in long-term health issues and an excessive mortality rate. The SARS CoV-2 virus can spread as small aerosols and enters the respiratory systems through the oral (nose or mouth) airway. The SARS CoV-2 particle transport to the mouth-throat and upper airways is analyzed by the available literature. Due to the tiny size, the virus can travel to the terminal airways of the respiratory system and form a severe health hazard. There is a gap in the understanding of the SARS CoV-2 particle transport to the terminal airways. The present study investigated the SARS CoV-2 virus particle transport and deposition to the terminal airways in a complex 17-generation lung model. This first-ever study demonstrates how far SARS CoV-2 particles can travel in the respiratory system. ANSYS Fluent solver was used to simulate the virus particle transport during sleep and light and heavy activity conditions. Numerical results demonstrate that a higher percentage of the virus particles are trapped at the upper airways when sleeping and in a light activity condition. More virus particles have lung contact in the right lung than the left lung. A comprehensive lobe specific deposition and deposition concentration study was performed. The results of this study provide a precise knowledge of the SARs CoV-2 particle transport to the lower branches and could help the lung health risk assessment system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...