Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 487(7406): 231-4, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22763458

RESUMO

Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals. Furthermore, 'striated muscle' and 'non-muscle' myhc orthologues are expressed differentially in two sponges, compatible with a functional diversification before the origin of true muscles and the subsequent use of striated muscle MyHC in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess striated muscle myhc orthologues but lack crucial components of bilaterian striated muscles, such as genes that code for titin and the troponin complex, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian Z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of new proteins to a pre-existing, ancestral contractile apparatus may serve as a model for the evolution of complex animal cell types.


Assuntos
Evolução Biológica , Cnidários/anatomia & histologia , Músculo Estriado/fisiologia , Animais , Cnidários/genética , Cnidários/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica , Músculo Estriado/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Filogenia
3.
PLoS Biol ; 8(10)2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957188

RESUMO

Understanding how protein structures and functions have diversified is a central goal in molecular evolution. Surveys of very divergent proteins from model organisms, however, are often insufficient to determine the features of ancestral proteins and to reveal the evolutionary events that yielded extant diversity. Here we combine genomic, biochemical, functional, structural, and phylogenetic analyses to reconstruct the early evolution of nuclear receptors (NRs), a diverse superfamily of transcriptional regulators that play key roles in animal development, physiology, and reproduction. By inferring the structure and functions of the ancestral NR, we show--contrary to current belief--that NRs evolved from a ligand-activated ancestral receptor that existed near the base of the Metazoa, with fatty acids as possible ancestral ligands. Evolutionary tinkering with this ancestral structure generated the extraordinary diversity of modern receptors: sensitivity to different ligands evolved because of subtle modifications of the internal cavity, and ligand-independent activation evolved repeatedly because of various mutations that stabilized the active conformation in the absence of ligand. Our findings illustrate how a mechanistic dissection of protein evolution in a phylogenetic context can reveal the deep homology that links apparently "novel" molecular functions to a common ancestral form.


Assuntos
Evolução Molecular , Ligantes , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Animais , Linhagem Celular , Duplicação Gênica , Genoma , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Poríferos/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional
4.
Evol Dev ; 12(5): 494-518, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20883218

RESUMO

Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-ß-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, ß-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-ß-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-ß-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.


Assuntos
Poríferos/metabolismo , Proteínas Wnt/metabolismo , Animais , Evolução Biológica , Padronização Corporal , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Receptores Frizzled/química , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Poríferos/embriologia , Poríferos/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/fisiologia , beta Catenina/metabolismo
5.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686567

RESUMO

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Assuntos
Evolução Molecular , Genoma/genética , Poríferos/genética , Animais , Apoptose/genética , Adesão Celular/genética , Ciclo Celular/genética , Polaridade Celular/genética , Proliferação de Células , Genes/genética , Genômica , Humanos , Imunidade Inata/genética , Modelos Biológicos , Neurônios/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Filogenia , Poríferos/anatomia & histologia , Poríferos/citologia , Poríferos/imunologia , Análise de Sequência de DNA , Transdução de Sinais/genética
6.
BMC Biol ; 8: 4, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20082688

RESUMO

BACKGROUND: LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. RESULTS: We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. CONCLUSIONS: The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural territories in larval and juvenile polyp stages. This pattern is consistent with a possible role in patterning the Nematostella nervous system. We propose a scenario in which Lhx genes play a homologous role in neural patterning across eumetazoans.


Assuntos
Evolução Molecular , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Hydra/embriologia , Hydra/genética , Hydra/metabolismo , Hidrozoários/embriologia , Hidrozoários/genética , Hidrozoários/metabolismo , Íntrons/genética , Filogenia , Placozoa/embriologia , Placozoa/genética , Placozoa/metabolismo , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Sintenia/genética
7.
Curr Opin Genet Dev ; 19(6): 591-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19880309

RESUMO

Analyses of recently sequenced sponge, cnidarian, placozoan, and choanoflagellate genomes have revealed that most transcription factor (TF) classes and families expressed during bilaterian development originated at the dawn of the animal kingdom, before the divergence of contemporary animal lineages. The ancestral metazoan genome included members of the bHLH, Mef2, Fox, Sox, T-box, ETS, nuclear receptor, Rel/NF-kappaB, bZIP, and Smad families, and a diversity of homeobox-containing classes, including ANTP, Prd-like, Pax, POU, LIM-HD, Six, and TALE. As many of these TF classes and families appear to be metazoan specific and not present in choanoflagellates, fungi and more distant eukaryotes, their genesis and expansion may have contributed to the evolution of animal multicellularity.


Assuntos
Evolução Molecular , Fatores de Transcrição/química , Animais , Genômica , Família Multigênica , Filogenia
8.
BMC Res Notes ; 2: 59, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19374764

RESUMO

BACKGROUND: The Runt DNA binding domain (Runx) defines a metazoan family of sequence-specific transcription factors with essential roles in animal ontogeny and stem cell based development. Depending on cis-regulatory context, Runx proteins mediate either transcriptional activation or repression. In many contexts Runx-mediated repression is carried out by Groucho/TLE, recruited to the transcriptional complex via a C-terminal WRPY sequence motif that is found encoded in all heretofore known Runx genes. FINDINGS: Full-length Runx genes were identified in the recently sequenced genomes of phylogenetically diverse metazoans, including placozoans and sponges, the most basally branching members of that clade. No sequences with significant similarity to the Runt domain were found in the genome of the choanoflagellate Monosiga brevicollis, confirming that Runx is a metazoan apomorphy. A contig assembled from genomic sequences of the haplosclerid demosponge Amphimedon queenslandica was used to construct a model of the single Runx gene from that species, AmqRunx, the veracity of which was confirmed by expressed sequences. The encoded sequence of the Runx protein OscRunx from the homoscleromorph sponge Oscarella carmella was also obtained from assembled ESTs. Remarkably, a syntenic linkage between Runx and Supt3h, previously reported in vertebrates, is conserved in A. queenslandica. Whereas OscRunx encodes a C-terminal Groucho-recruitment motif, AmqRunx does not, although a Groucho homologue is found in the A. queenslandica genome. CONCLUSION: Our results are consistent with the hypothesis that sponges are paraphyletic, and suggest that Runx-WRPY mediated recruitment of Groucho to cis-regulatory sequences originated in the ancestors of eumetazoans following their divergence from demosponges.

9.
J Biol Chem ; 283(42): 28226-35, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18697744

RESUMO

Collagens are often considered a metazoan hallmark, with the fibril-forming fibrillar collagens present from sponges to human. From evolutionary studies, three fibrillar collagen clades (named A, B, and C) have been defined and shown to be present in mammals, whereas the emergence of the A and B clades predates the protostome/deuterostome split. Moreover, several C clade fibrillar collagen chains are present in some invertebrate deuterostome genomes but not in protostomes whose genomes have been sequenced. The newly sequenced genomes of the choanoflagellate Monosiga brevicollis, the demosponge Amphimedon queenslandica, and the cnidarians Hydra magnipapillata (Hydra) and Nematostella vectensis (sea anemone) allow us to have a better understanding of the origin and evolution of fibrillar collagens. Analysis of these genomes suggests that an ancestral fibrillar collagen gene arose at the dawn of the Metazoa, before the divergence of sponge and eumetazoan lineages. The duplication events leading to the formation of the three fibrillar collagen clades (A, B, and C) occurred before the eumetazoan radiation. Interestingly, only the B clade fibrillar collagens preserved their characteristic modular structure from sponge to human. This observation is compatible with the suggested primordial function of type V/XI fibrillar collagens in the initiation of the formation of the collagen fibrils.


Assuntos
Colágeno Tipo V/química , Colágeno Tipo XI/química , Colágenos Fibrilares/química , Anêmonas-do-Mar/metabolismo , Sequência de Aminoácidos , Animais , Colágeno/química , Evolução Molecular , Genoma , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Poríferos , Homologia de Sequência de Aminoácidos
10.
Biol Bull ; 214(3): 205-17, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18574099

RESUMO

A huge discrepancy in morphological diversity exists between poriferans and eumetazoans. The disparate evolutionary outcomes of these two ancient metazoan lineages may be reflected in the composition, architecture, and regulation of genomes of modern representatives. As a case study, we compare the sizes of upstream intergenic regions of genes found within the NK homeobox cluster of the demosponge Amphimedon queenslandica with eumetazoan orthologs. This analysis includes NK genes as well as five structural genes interspersed in the cluster. The upstream intergenic regions of the homeobox genes are significantly smaller in Amphimedon than in eumetazoan orthologs, suggesting that the sponge genes house less cis-regulatory information. In contrast, the upstream intergenic regions of the structural genes are not significantly different. The simple developmental expression patterns of representative NK genes in Amphimedon lends support to the proposition that their regulatory apparatuses, unlike those of bilaterians, do not encode the information for dynamic, pleiotropic gene expression. On the basis of this example, we suggest that the size of the intergenic regions upstream of the transcription start site may act as a proxy for estimating regulatory complexity and reflect the limitations of the sponge genome to direct complex and varied morphogenetic processes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Família Multigênica , Poríferos/genética , Animais , DNA Intergênico , Ordem dos Genes
11.
Mol Biol Evol ; 25(5): 980-96, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18296413

RESUMO

We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole-genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T-box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains (such as Paired, POU, and T-box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity.


Assuntos
Evolução Biológica , Poríferos/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Fatores de Transcrição Forkhead/genética , Fungos/genética , Genes Homeobox , Invertebrados/citologia , Invertebrados/genética , Dados de Sequência Molecular , Fatores do Domínio POU/genética , Fatores de Transcrição Box Pareados/genética , Filogenia , Poríferos/classificação , Poríferos/citologia , Estrutura Terciária de Proteína/genética
12.
CSH Protoc ; 2008: pdb.emo108, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356734

RESUMO

INTRODUCTIONSponges are one of the earliest branching metazoans. In addition to undergoing complex development and differentiation, they can regenerate via stem cells and can discern self from nonself ("allorecognition"), making them a useful comparative model for a range of metazoan-specific processes. Molecular analyses of these processes have the potential to reveal ancient homologies shared among all living animals and critical genomic innovations that underpin metazoan multicellularity. Amphimedon queenslandica (Porifera, Demospongiae, Haplosclerida, Niphatidae) is the first poriferan representative to have its genome sequenced, assembled, and annotated. Amphimedon exemplifies many sessile and sedentary marine invertebrates (e.g., corals, ascidians, bryozoans): They disperse during a planktonic larval phase, settle in the vicinity of conspecifics, ward off potential competitors (including incompatible genotypes), and ensure that brooded eggs are fertilized by conspecific sperm. Using genomic and expressed sequence tag (EST) resources from Amphimedon, functional genomic approaches can be applied to a wide range of ecological and population genetic processes, including fertilization, dispersal, and colonization dynamics, host-symbiont interactions, and secondary metabolite production. Unlike most other sponges, Amphimedon produce hundreds of asynchronously developing embryos and larvae year-round in distinct, easily accessible brood chambers. Embryogenesis gives rise to larvae with at least a dozen cell types that are segregated into three layers and patterned along the body axis. In this article, we describe some of the methods currently available for studying A. queenslandica, focusing on the analysis of embryos, larvae, and post-larvae.

13.
CSH Protoc ; 2008: pdb.prot5095, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356741

RESUMO

INTRODUCTIONFertilization occurs internally in Amphimedon and embryos are brooded in multiple chambers throughout the adult. Each chamber contains a mixture of developmental stages, from egg to late ring stages (i.e., prehatch late embryos). At the end of embryogenesis, swimming parenchymella larvae emerge from the adult. After several hours in the water column, the larvae settle and metamorphose into juvenile sponges. This protocol details how to obtain Amphimedon larvae and post-larvae/juveniles as well as embryos. Once isolated, these biological stages can be used for a variety of molecular and cellular analyses.

14.
CSH Protoc ; 2008: pdb.prot5096, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356742

RESUMO

INTRODUCTIONDevelopmental gene expression is analyzed predominantly via whole-mount in situ hybridization using digoxigenin-labeled RNA probes. This protocol describes how to perform this procedure in Amphimedon queenslandica, including fixation, hybridization, and sectioning of embryonic, larval, and post-larval juvenile stages.

15.
PLoS One ; 2(10): e1031, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17925879

RESUMO

BACKGROUND: The origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion, communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been identified in a range of sponges (phylum Porifera), their roles in development have not been investigated and remain largely unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-beta signalling ligands during the embryonic development of a sponge. METHODOLOGY/PRINCIPAL FINDINGS: Using resources generated in the recent sponge Amphimedon queenslandica (Demospongiae) genome project, we have recovered genes encoding Wnt and TGF-beta signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until the swimming larva stage. In contrast, TGF-beta expression is highest at the anterior pole. As in complex animals, sponge Wnt and TGF-beta expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-beta are expressed radially along the anterior-posterior axis. CONCLUSIONS/SIGNIFICANCE: We infer from the expression of Wnt and TGF-beta in Amphimedon that the ancestor that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-beta along the anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways contributed to establishing axial polarity in the very first metazoans.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Poríferos/embriologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal , Adesão Celular , Diferenciação Celular , DNA Complementar/metabolismo , Hibridização In Situ , Ligantes , Modelos Biológicos , Filogenia , Transdução de Sinais
16.
Curr Biol ; 17(8): 706-10, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17379523

RESUMO

Hox and other Antennapedia (ANTP)-like homeobox gene subclasses - ParaHox, EHGbox, and NK-like - contribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes' origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster.


Assuntos
Evolução Molecular , Genes Homeobox , Invertebrados/genética , Animais , Proteína do Homeodomínio de Antennapedia/genética , Cnidários/genética , DNA Complementar , Embrião não Mamífero/química , Gastrópodes/genética , Genoma , Família Multigênica , Poríferos/genética
17.
Evol Dev ; 8(2): 150-73, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16509894

RESUMO

Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Poríferos/citologia , Poríferos/embriologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , DNA/metabolismo , Larva/citologia , Larva/genética , Larva/metabolismo , Ligantes , Dados de Sequência Molecular , Poríferos/genética , Poríferos/metabolismo , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/biossíntese
18.
Integr Comp Biol ; 45(2): 335-41, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21676778

RESUMO

The last common ancestor to all extant animals possessed features shared between the most basal metazoan lineage-Porifera-and the rest of the animal kingdom. To identify ancient and conserved developmental processes, we have been investigating embryogenesis and metamorphosis in the demosponge Reniera. Many of the cardinal features of eumetazoan development are displayed during Reniera embryogenesis. Specifically, after fertilization there is a period of cell division with little to no cell growth that results in two obvious cell populations distinguished by size as micromeres and macromeres, and by fate: the small cells differentiate into ciliated cells. This is followed by a period of differential cell activities that produces an embryo consisting of two then three layers, where at least 11 populations of differentiated cells are allocated into the different layers and patterned within these layers. This organization yields a swimming larva with the capacity to sense and respond to the surrounding environment, despite a lack of neurons and a coordinating system. During Reniera embryogenesis, the clearest example of cell patterning is the formation of a ring of pigment cells at the future posterior pole of the larva. Pigment cell pattern formation has two phases, both of which may require the movement of a large number of cells apparently in response to a morphogen gradient. First, pigmented cells, which initially cover the surface of the embryo, migrate to the future posterior end and form a dark spot. Second, the cells move outwards from the spot and rearrange into a ring. Numerous and diverse transcription factor genes are expressed during Reniera embryogenesis, most of which belong to metazoan-specific families and include members of POU, LIMHD, Pax, Bar, Prox2, NK-2, T-box, MEF-2, Fox, Sox, Ets, and nuclear hormone receptor families. In combination, these observations suggest that the last common ancestor to all extant metazoan lineages already possessed the basic regulatory genetic architecture to direct the specification, patterning and differentiation of multiple cell types. Some of these differentiated cells may have been arranged into localised functional units-i.e., simple tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...