Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 236(6): 1839-1851, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30656365

RESUMO

RATIONALE: The rodent Continuous Performance Test (rCPT) is a novel rodent paradigm to assess attention and impulsivity that resembles the human CPT. This task measures the rodents' ability to discriminate between target and non-target stimuli. The effect of attention-deficit/hyperactivity disorder (ADHD) medication on rCPT performance in mice remains to be fully characterized. OBJECTIVE: To investigate the predictive validity of the mouse rCPT by studying the effects of ADHD medication methylphenidate, atomoxetine, amphetamine, guanfacine, and modafinil in four behavioral subgroups based on performance and impulsivity levels. METHODS: Two cohorts of male C57BL/6J mice were used, and the effect of treatment was tested in a variable stimulus duration probe. Performance and impulsive subgroups were made based on discriminability and percentage premature responses, respectively. RESULTS: Methylphenidate, atomoxetine, and amphetamine improved performance in the low-performing animals, with no effect in the high-performers. These improvements were a result of increased hit rate and/or decreased false-alarm rate. Furthermore, these drugs decreased percentage premature responses in the high-impulsive group. Methylphenidate, guanfacine, and modafinil increased premature responses in the low-impulsive group. Modafinil impaired performance in the high-performers by increasing false-alarm rate. CONCLUSION: The effect of ADHD treatment was dependent on baseline, as seen by increases in performance for the low-performers and decreases in impulsivity for the high-impulsive animals. These results agree with clinical data and may support the inverted U-shaped arousal-performance theory. The rCPT combined with behavioral separation into subgroups has high predictive validity, and our study is a step forward towards establishing the clinical translatability of the rCPT.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Comportamento Impulsivo/efeitos dos fármacos , Testes Neuropsicológicos , Anfetamina/farmacologia , Anfetamina/uso terapêutico , Animais , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/uso terapêutico , Atenção/efeitos dos fármacos , Atenção/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Comportamento Impulsivo/fisiologia , Masculino , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Roedores
2.
J Neurosci ; 21(13): 4699-711, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-11425897

RESUMO

The diencephalon comprises three functionally distinct regions: synencephalon, dorsal thalamus, and ventral thalamus. Patterning of the diencephalon has been proposed to involve subdivision of its anteroposterior axis into segments, neuromeres or prosomeres (Bergquist and Kallen, 1954; Vaage, 1969; Figdor and Stern, 1993; Rubenstein et al., 1994; Redies et al., 2000; Yoon et al., 2000). However, the number and sequence of diencephalic neuromeres, or even their existence, are uncertain. We have examined the proposed subdivisions by morphology, gene expression, acquisition of boundary-specific phenotypes, and cell lineage restriction. We find that at stage 16 in chick the diencephalon is divided into synencephalon and parencephalon. The synencephalon exhibits neuromeric morphology, expresses Prox, and acquires neuromere boundary properties at its interface with both the midbrain and the parencephalon. Although the mesencephalic/synencephalic boundary restricts cell mixing, the synencephalic/parencephalic boundary does not. Similarly, there is no lineage restriction between the parencephalon and the more rostral forebrain (secondary prosencephalon). Subdivision of the parencephalon into ventral and dorsal thalamus involves the formation of a narrow intraparencephalic territory, the zona limitans intrathalamica (zli). This is correlated with the acquisition of cell lineage restriction at both anterior and posterior borders of the zli, the appearance of boundary-specific properties, and Gbx2 and Dlx2 expression in dorsal thalamic and ventral thalamic territories, respectively. At stage 22, the synencephalon is divided into two domains, distinguished by differential gene expression and tissue morphology, but associated with neither a boundary phenotype nor cell lineage restriction. Our results suggest that the diencephalon does not have an overt segmental pattern.


Assuntos
Diencéfalo/citologia , Diencéfalo/embriologia , Glicosiltransferases , Animais , Antígenos de Diferenciação/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas Aviárias , Padronização Corporal , Bromodesoxiuridina , Linhagem da Célula , Embrião de Galinha , Diencéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Morfogênese , Neurônios/citologia , Proteínas/genética , Proteínas/metabolismo , Fase S
4.
Science ; 196(4295): 1152, 1977 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-17787068
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...