Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851569

RESUMO

Dairy cows experiencing heat stress (HS) during the pre-calving portion of the transition period give birth to smaller calves and produce less milk and milk protein. Supplementation of rumen-protected methionine (RPM) has been shown to modulate protein, energy, and placenta metabolism, making it a potential candidate to ameliorate HS effects. We investigated the effects of supplementing RPM to transition cows under HS induced by electric heat blanket (EHB) on cow-calf performance. Six weeks before expected calving, 53 Holstein cows were housed in a tie-stall barn and fed a control diet (CON, 2.2% Met of MP) or a CON diet supplemented with Smartamine®M (MET, 2.6% Met of MP, Adisseo Inc., France). Four weeks pre-calving, all MET and half CON cows were fitted with an EHB. The other half of the CON cows were considered thermoneutral (TN), resulting in 3 treatments: CONTN (n = 19), CONHS (n = 17), and METHS (n = 17). Respiratory rate (RR), skin temperature (ST), and rectal temperature (RT) were measured thrice weekly and core body temperatures recorded bi-weekly. Post-calving body weights (BW) and BCS were recorded weekly, and DMI was calculated and averaged weekly. Milk yield was recorded daily and milk components were analyzed every third DIM. Biweekly AA and weekly nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), insulin, and glucose were measured from plasma. Calf birth weight and 24 h growth, thermoregulation, and hematology profile were measured and apparent efficiency of absorption (AEA) of immunoglobulins was calculated. Data were analyzed using the MIXED procedure of SAS with 2 preplanned orthogonal contrasts: CONTN vs. the average of CONHS and METHS (C1) and CONHS vs. METHS (C2). Relative to TN, EHB cows had increased RT during the post-calving weeks and increased RR and ST during the entire transition period. Body weight, BCS, DMI, and milk yield were not impacted by the EHB or RPM. However, protein % and SNF were lower in CONHS, relative to METHS cows. At calving, METHS dams had higher glucose concentrations, relative to CONHS, and during the post-calving weeks, the EHB cows had lower NEFA concentrations than TN cows. Calf birthweight and AEA were reduced by HS, while RR was increased by HS. Calf withers height tended to be shorter and RT were lower in CONHS, compared with MTHS heifers. Overall, RPM supplementation to transition cows reverts the negative impact of HS on blood glucose concentration at calving and milk protein % in the dams and increases wither height while decreasing RT in the calf.

2.
Acta Anaesthesiol Scand ; 50(5): 572-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16643227

RESUMO

BACKGROUND: The mitochondrial membrane potential (DeltaPsim) controls the generation of adenosine triphosphate (ATP) and reactive oxygen species, and sequesteration of intracellular Ca2+[Ca2+]i. Clinical concentrations of sevoflurane affect the DeltaPsim in neural mitochondria, but the mechanisms remain elusive. The aim of the present study was to compare the effect of isoflurane and sevoflurane on DeltaPsim in rat pre-synaptic terminals (synaptosomes), and to investigate whether these agents affect DeltaPsim by inhibiting the respiratory chain. METHODS: Synaptosomes were loaded with the fluorescent probes JC-1 (DeltaPsim) and Fura-2 ([Ca2+]i) and exposed to isoflurane or sevoflurane. The effect of the anaesthetics on the electron transport chain was investigated by blocking complex I and complex V. RESULTS: Isoflurane 1 and 2 minimum alveolar concentration (MAC) decreased the normalized JC-1 ratio from 0.92 +/- 0.03 in control to 0.86 +/- 0.02 and 0.81 +/- 0.01, respectively, reflecting a depolarization of the mitochondrial membrane (n = 9). Isoflurane 2 MAC increased [Ca2+]i. In Ca2+-depleted medium, isoflurane still decreased DeltaPsim while [Ca2+]i remained unaltered. The effect of isoflurane was more pronounced than for sevoflurane. Blocking complex V of the respiratory chain enhanced the isoflurane- and sevoflurane-induced mitochondrial depolarization, whereas blocking complex I and V decreased DeltaPsim to the same extent in control, isoflurane and sevoflurane experiments. CONCLUSIONS: Isoflurane and sevoflurane may act as metabolic inhibitors by depolarizing pre-synaptic mitochondria through inhibition of the electron transport chain, although isoflurane seems to inhibit mitochondrial function more significantly than sevoflurane. Both agents inhibit the respiratory chain sufficiently to cause ATP synthase reversal.


Assuntos
Anestésicos Inalatórios/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/fisiologia , Corantes Fluorescentes , Técnicas In Vitro , Isoflurano/farmacologia , Éteres Metílicos/farmacologia , Microscopia Eletrônica , Terminações Pré-Sinápticas/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Ratos , Sevoflurano , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
3.
Acta Anaesthesiol Scand ; 48(5): 562-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15101849

RESUMO

BACKGROUND: Volatile anaesthetics protect the heart from ischaemic injury by activating mitochondrial signalling pathways. The aim of this study was to test whether sevoflurane, which is increasingly used in neuroanaesthesia, affects mitochondrial function in the central nervous system by altering the mitochondrial membrane potential (DeltaPsi(m)). METHODS: In order to correlate free cytosolic Ca(2+) ([Ca(2+)](i)) and DeltaPsi(m), rat neural presynaptic terminals (synaptosomes) were loaded with the fluorescent probes fura-2 and JC-1. During sevoflurane exposure, 4-aminopyridine (4-AP) 500 micro M to induce pre-synaptic membrane depolarization or carbonylcyanide-p-(trifluoromethoxy)-phenylhydrazone (FCCP) 1 micro M to induce maximum mitochondrial depolarization was added. In order to block mitochondrial ATP-regulated K(+)-channels (mitoK(ATP)), the antagonist 5-hydroxydecanoate (5-HD) 500 micro M was added. RESULTS: In Ca(2+)-containing medium, both sevoflurane 1 and 2 MAC gradually decreased the normalized JC-1 ratio from 0.96 +/- 0.01 in control to 0.92 +/- 0.01 and 0.89 +/- 0.01, representing a depolarization of DeltaPsi(m) (n = 9, P < 0.05). Sevoflurane 2 MAC increased [Ca(2+)](i). In Ca(2+)-depleted medium, sevoflurane 1 and 2 MAC depolarized DeltaPsi(m), while [Ca(2+)](i) remained unaltered. Sevoflurane 2 MAC attenuated the 4-AP-induced depolarization of DeltaPsi(m). When mitoK(ATP) was blocked, the sevoflurane-induced depolarization of DeltaPsi(m) was attenuated, but not blocked. The depolarizing effect of sevoflurane on DeltaPsi(m) compared with FCCP was calculated to 13.2 +/- 1.3% in Ca(2+)-containing and 15.1 +/- 1.2% in Ca(2+)-depleted medium (n = 7). CONCLUSIONS: Sevoflurane depolarizes DeltaPsi(m) in rat synaptosomes, and the effect is not dependent on Ca(2+)-influx to the cytosol. Opening of mitoK(ATP) is partly responsible for the depolarizing effect of sevoflurane.


Assuntos
Anestésicos Inalatórios/farmacologia , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Córtex Cerebral/efeitos dos fármacos , Éteres Metílicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , 4-Aminopiridina/administração & dosagem , Trifosfato de Adenosina , Animais , Antiarrítmicos/administração & dosagem , Carbonil Cianeto m-Clorofenil Hidrazona/administração & dosagem , Células Cultivadas , Córtex Cerebral/fisiologia , Ácidos Decanoicos/administração & dosagem , Feminino , Polarização de Fluorescência , Hidroxiácidos/administração & dosagem , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Mitocôndrias/fisiologia , Bloqueadores dos Canais de Potássio/administração & dosagem , Canais de Potássio , Ratos , Ratos Wistar , Sevoflurano , Sinaptossomos/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA