Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Schizophr Bull ; 50(1): 166-176, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379847

RESUMO

BACKGROUND AND HYPOTHESIS: Individuals with schizophrenia or bipolar disorder have attenuated auditory mismatch negativity (MMN) responses, indicating impaired sensory information processing. Computational models of effective connectivity between brain areas underlying MMN responses show reduced connectivity between fronto-temporal areas in individuals with schizophrenia. Here we ask whether children at familial high risk (FHR) of developing a serious mental disorder show similar alterations. STUDY DESIGN: We recruited 67 children at FHR for schizophrenia, 47 children at FHR for bipolar disorder as well as 59 matched population-based controls from the Danish High Risk and Resilience study. The 11-12-year-old participants engaged in a classical auditory MMN paradigm with deviations in frequency, duration, or frequency and duration, while we recorded their EEG. We used dynamic causal modeling (DCM) to infer on the effective connectivity between brain areas underlying MMN. STUDY RESULTS: DCM yielded strong evidence for differences in effective connectivity among groups in connections from right inferior frontal gyrus (IFG) to right superior temporal gyrus (STG), along with differences in intrinsic connectivity within primary auditory cortex (A1). Critically, the 2 high-risk groups differed in intrinsic connectivity in left STG and IFG as well as effective connectivity from right A1 to right STG. Results persisted even when controlling for past or present psychiatric diagnoses. CONCLUSIONS: We provide novel evidence that connectivity underlying MMN responses in children at FHR for schizophrenia and bipolar disorder is altered at the age of 11-12, echoing findings that have been found in individuals with manifest schizophrenia.


Assuntos
Transtorno Bipolar , Esquizofrenia , Criança , Humanos , Esquizofrenia/diagnóstico , Potenciais Evocados Auditivos/fisiologia , Lobo Temporal , Córtex Pré-Frontal , Eletroencefalografia
2.
Schizophr Bull ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37756493

RESUMO

BACKGROUND AND HYPOTHESES: Impaired executive control is a potential prognostic and endophenotypic marker of schizophrenia (SZ) and bipolar disorder (BP). Assessing children with familial high-risk (FHR) of SZ or BP enables characterization of early risk markers and we hypothesize that they express impaired executive control as well as aberrant brain activation compared to population-based control (PBC) children. STUDY DESIGN: Using a flanker task, we examined executive control together with functional magnetic resonance imaging (fMRI) in 11- to 12-year-old children with FHR of SZ (FHR-SZ) or FHR of BP (FHR-BP) and PBC children as part of a register-based, prospective cohort-study; The Danish High Risk and Resilience study-VIA 11. STUDY RESULTS: We included 85 (44% female) FHR-SZ, 63 (52% female) FHR-BP and 98 (50% female) PBC in the analyses. Executive control effects, caused by the spatial visuomotor conflict, showed no differences between groups. Bayesian ANOVA of reaction time (RT) variability, quantified by the coefficient of variation (CVRT), revealed a group effect with similarly higher CVRT in FHR-BP and FHR-SZ compared to PBC (BF10 = 6.82). The fMRI analyses revealed no evidence for between-group differences in task-related brain activation. Post hoc analyses excluding children with psychiatric illness yielded same results. CONCLUSION: FHR-SZ and FHR-BP at age 11-12 show intact ability to resolve a spatial visuomotor conflict and neural efficacy. The increased variability in RT may reflect difficulties in maintaining sustained attention. Since variability in RT was independent of existing psychiatric illness, it may reflect a potential endophenotypic marker of risk.

3.
Schizophr Res ; 246: 187-194, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797883

RESUMO

BACKGROUND: Infrequent deviants in a rapid sequence of sounds elicit a negative cortical potential over the frontocentral midline (mismatch negativity, MMN) followed by a positive deflection (P3a). Both cortical potentials are consistently attenuated in patients with schizophrenia (SZ), and, to a lesser degree, in patients with bipolar disorder (BP). OBJECTIVE: Since it is unclear when MMN and P3a deficits arise relative to the emergence of symptoms, we examined whether MMN and P3a alterations are already detectable in children with familial high risk. METHODS: Using 128-channel electroencephalography, we recorded auditory MMN and P3a evoked by a deviation in sound duration, frequency, or both in 51 children with familial high-risk for SZ (FHR-SZ), 41 children with familial high-risk for BP (FHR-BP), and 39 population-based children (PBC) at a mean age of 12.10. RESULTS: MMN amplitude evoked by a duration deviant was larger in children with FHR-BP compared to PBC and FHR-SZ. P3a amplitude in response to a duration ∗ frequency deviant was larger in children with FHR-BP compared to children with FHR-SZ, but not compared to PBC. MMN- and P3a-peak latency did not differ between groups. CONCLUSIONS: At an age of around 12 years, children with FHR-BP display enhanced neural sensitivity to change detection of duration deviants, while FHR-SZ showed a normal response pattern. Longitudinal recordings in high-risk children during adolescence are required to elucidate the temporal trajectories of MMN and P3a responses and how they relate to the emergence of first clinical symptoms in SZ and BP.


Assuntos
Transtorno Bipolar , Esquizofrenia , Estimulação Acústica , Adolescente , Transtorno Bipolar/diagnóstico , Criança , Dinamarca , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Humanos , Esquizofrenia/diagnóstico
4.
Clin Neurophysiol ; 141: 53-61, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853310

RESUMO

OBJECTIVE: Bipolar disorder is characterized by aberrant neurophysiological responses as measured with electroencephalography (EEG) and magnetoencephalography (MEG), including the 40-Hz auditory steady-state response (ASSR). 40-Hz ASSR deficits are also found in patients with schizophrenia and may represent a transdiagnostic biomarker of neuronal circuit dysfunction. In this systematic review and meta-analysis, we summarize and evaluate the evidence for 40-Hz ASSR deficits in patients with bipolar disorder. METHODS: We identified studies from PubMed, EMBASE, and SCOPUS. We assessed the risk of bias, calculated Hedges' g meta-level effect sizes, and investigated small-study effects using funnel plots and Egger regression. RESULTS: Seven studies, comprising 396 patients with bipolar disorder and 404 healthy controls, were included in the meta-analysis. Studies displayed methodological heterogeneity and an overall high risk of bias. Patients with bipolar disorder showed consistent reductions in 40-Hz ASSR evoked power (Hedges' g = -0.49; 95% confidence intervals [-0.67, -0.31]) and inter-trial phase coherence (ITPC) (Hedges' g = -0.43; 95 %CI [-0.58, -0.29]) compared with healthy controls. CONCLUSIONS: Our meta-analysis provides evidence that 40-Hz ASSRs are reduced in patients with bipolar disorder compared with healthy controls. SIGNIFICANCE: Future large-scale studies are warranted to link 40-Hz ASSR deficits to clinical features and developmental trajectories.


Assuntos
Transtorno Bipolar , Esquizofrenia , Estimulação Acústica , Transtorno Bipolar/diagnóstico , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Humanos , Magnetoencefalografia
5.
Front Psychiatry ; 13: 809807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444571

RESUMO

Background: Children born to parents with severe mental illness have gained more attention during the last decades because of increasing evidence documenting that these children constitute a population with an increased risk of developing mental illness and other negative life outcomes. Because of high-quality research with cohorts of offspring with familial risk and increased knowledge about gene-environment interactions, early interventions and preventive strategies are now being developed all over the world. Adolescence is a period characterized by massive changes, both in terms of physical, neurologic, psychological, social, and behavioral aspects. It is also the period of life with the highest risk of experiencing onset of a mental disorder. Therefore, investigating the impact of various risk and resilience factors in adolescence is important. Methods: The Danish High-Risk and Resilience Study started data collection in 2012, where 522 7-year-old children were enrolled in the first wave of the study, the VIA 7 study. The cohort was identified through Danish registers based on diagnoses of the parents. A total of 202 children had a parent diagnosed with schizophrenia, 120 children had a parent diagnosed with bipolar disorder, and 200 children had parents without these diagnoses. At age 11 years, all children were assessed for the second time in the VIA 11 study, with a follow-up retention rate of 89%. A comprehensive assessment battery covering domains of psychopathology, neurocognition, social cognition and behavior, motor development and physical health, genetic analyses, attachment, stress, parental functioning, and home environment was carried out at each wave. Magnetic resonance imaging scans of the brain and electroencephalograms were included from age 11 years. This study protocol describes the third wave of assessment, the VIA 15 study, participants being 15 years of age and the full, 3-day-long assessment battery this time including also risk behavior, magnetoencephalography, sleep, and a white noise paradigm. Data collection started on May 1, 2021. Discussion: We will discuss the importance of longitudinal studies and cross-sectional data collection and how studies like this may inform us about unmet needs and windows of opportunity for future preventive interventions, early illness identification, and treatment in the future.

7.
Neuroimage ; 241: 118329, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302968

RESUMO

Previous studies applying machine learning methods to psychosis have primarily been concerned with the binary classification of chronic schizophrenia patients and healthy controls. The aim of this study was to use electroencephalographic (EEG) data and pattern recognition to predict subclinical psychotic-like experiences on a continuum between these two extremes in otherwise healthy people. We applied two different approaches to an auditory oddball regularity learning task obtained from N = 73 participants: A feature extraction and selection routine incorporating behavioural measures, event-related potential components and effective connectivity parameters; Regularisation of spatiotemporal maps of event-related potentials. Using the latter approach, optimal performance was achieved using the response to frequent, predictable sounds. Features within the P50 and P200 time windows had the greatest contribution toward lower Prodromal Questionnaire (PQ) scores and the N100 time window contributed most to higher PQ scores. As a proof-of-concept, these findings demonstrate that EEG data alone are predictive of individual psychotic-like experiences in healthy people. Our findings are in keeping with the mounting evidence for altered sensory responses in schizophrenia, as well as the notion that psychosis may exist on a continuum expanding into the non-clinical population.


Assuntos
Doenças Assintomáticas , Eletroencefalografia/métodos , Aprendizado de Máquina , Transtornos Psicóticos/diagnóstico , Estimulação Acústica/métodos , Adolescente , Adulto , Doenças Assintomáticas/psicologia , Percepção Auditiva/fisiologia , Feminino , Humanos , Masculino , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/psicologia , Adulto Jovem
8.
Front Psychiatry ; 11: 632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754058

RESUMO

Children, adolescents, and young adults with at least one first-degree relative [familial high-risk (FHR)] with either schizophrenia (SZ) or bipolar disorder (BD) have a one-in-two risk of developing a psychiatric disorder. Here, we review functional magnetic resonance imaging (fMRI) studies which examined task-related brain activity in young individuals with FHR-SZ and FHR-BD. A systematic search identified all published task-related fMRI studies in children, adolescents, and young adults below an age of 27 years with a first-degree relative with SZ or BD, but without manifest psychotic or affective spectrum disorder themselves. The search identified 19 cross-sectional fMRI studies covering four main cognitive domains: 1) working memory (n = 3), 2) cognitive control (n = 4), 3) reward processing (n = 3), and 4) emotion processing (n = 9). Thirteen studies included FHR-BD, five studies included FHR-SZ, and one study included a pooled FHR group. In general, task performance did not differ between the respective FHR groups and healthy controls, but 18 out of the 19 fMRI studies revealed regional alterations in task-related activation. Brain regions showing group differences in peak activation were regions associated with the respective task domain and showed little overlap between FHR-SZ and FHR-BD. The low number of studies, together with the low number of subjects, and the substantial heterogeneity of employed methodological approaches within the domain of working memory, cognitive control, and reward processing impedes finite conclusions. Emotion processing was the most investigated task domain in FHR-BD. Four studies reported differences in activation of the amygdala, and two studies reported differences in activation of inferior frontal/middle gyrus. Together, these studies provide evidence for altered brain processing of emotions in children, adolescents, and young adults at FHR-BD. More studies of higher homogeneity, larger sample sizes and with a longitudinal study design are warranted to prove a shared or specific FHR-related endophenotypic brain activation in young first-degree relatives of individuals with SZ or BD, as well as to pinpoint specific alterations in brain activation during cognitive-, emotional-, and reward-related tasks.

9.
Schizophr Res ; 222: 185-194, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32593736

RESUMO

BACKGROUND: The ability to generate a precise internal model of statistical regularities is impaired in schizophrenia. Predictive coding accounts of schizophrenia suggest that psychotic symptoms may be explained by a failure to build precise beliefs or a model of the world. The precision of this model may vary with context. For example, in a noisy environment the model will be more imprecise compared to a model built in an environment with lower noise. However compelling, this idea has not yet been empirically studied in schizophrenia. METHODS: In this study, 62 participants engaged in a stochastic mismatch negativity paradigm with high and low precision. We included inpatients with a schizophrenia spectrum disorder (N = 20), inpatients with a psychiatric disorder but without psychosis (N = 20), and healthy controls (N = 22), with comparable sex ratio and age distribution. Bayesian mapping and dynamic causal modelling were employed to investigate the underlying microcircuitry of precision encoding of auditory stimuli. RESULTS: We found strong evidence (exceedance P > 0.99) for differences in the underlying connectivity associated with precision encoding between the three groups as well as on the continuum of psychotic-like experiences assessed across all participants. Critically, we show changes in interhemispheric connectivity between the two inpatient groups, with some connections further aligning on the continuum of psychotic-like experiences. CONCLUSIONS: While our results suggest continuity in backward connectivity alterations with psychotic-like experiences regardless of diagnosis, they also point to specificity for the schizophrenia spectrum disorder group in interhemispheric connectivity alterations.


Assuntos
Percepção Auditiva , Transtornos Psicóticos , Esquizofrenia , Teorema de Bayes , Humanos
10.
Neuroimage Clin ; 22: 101721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30785050

RESUMO

One of the most common copy number variants, the 22q11.2 microdeletion, confers an increased risk for schizophrenia. Since schizophrenia has been associated with an aberrant neural response to repeated stimuli through both reduced adaptation and prediction, we here hypothesized that this may also be the case in nonpsychotic individuals with a 22q11.2 deletion. We recorded high-density EEG from 19 individuals with 22q11.2 deletion syndrome (12-25 years), as well as 27 healthy volunteers with comparable age and sex distribution, while they listened to a sequence of sounds arranged in a roving oddball paradigm. Using posterior probability maps and dynamic causal modelling we tested three different models accounting for repetition dependent changes in cortical responses as well as in effective connectivity; namely an adaptation model, a prediction model, and a model including both adaptation and prediction. Repetition-dependent changes were parametrically modulated by a combination of adaptation and prediction and were apparent in both cortical responses and in the underlying effective connectivity. This effect was reduced in individuals with a 22q11.2 deletion and was negatively correlated with negative symptom severity. Follow-up analysis showed that the reduced effect of the combined adaptation and prediction model seen in individuals with 22q11.2 deletion was driven by reduced adaptation rather than prediction failure. Our findings suggest that adaptation is reduced in individuals with a 22q11.2 deletion, which can be interpreted in light of the framework of predictive coding as a failure to suppress prediction errors.


Assuntos
Síndrome da Deleção 22q11/fisiopatologia , Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Encéfalo/fisiopatologia , Estimulação Acústica , Adolescente , Adulto , Teorema de Bayes , Criança , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
11.
Neuroimage ; 190: 154-171, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195053

RESUMO

The 22q11.2 deletion is one of the most common copy number variants in humans. Carriers of the deletion have a markedly increased risk for neurodevelopmental brain disorders, including schizophrenia, autism spectrum disorders, and attention deficit hyperactivity disorder. The high risk of psychiatric disorders associated with 22q11.2 deletion syndrome offers a unique possibility to identify the functional abnormalities that precede the emergence of psychosis. Carriers of a 22q11.2 deletion show a broad range of sensory processing and cognitive abnormalities similar as in schizophrenia, such as auditory and visual sensory processing, response inhibition, working memory, social cognition, reward processing and arithmetic processing. All these processes have a significant negative impact on daily life if impaired and have been studied extensively in schizophrenia using task-based functional neuroimaging. Here, we review task-related functional brain mapping studies that have used electroencephalography or functional magnetic resonance imaging to identify functional alterations in carriers with 22q11.2 deletion syndrome within the above mentioned cognitive and sensory domains. We discuss how the identification of functional changes at the brain system level can advance the general understanding of which neurobiological alterations set the frame for the emergence of neurodevelopmental disorders in the human brain. The task-based functional neuroimaging literature shows conflicting results in many domains. Nevertheless, consistent similarities between 22q11.2 deletion syndrome and schizophrenia have been found for sensory processing, social cognition and working memory. We discuss these functional brain alterations in terms of potential biomarkers of increased risk for psychosis in the general population.


Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Potenciais Evocados/fisiologia , Neuroimagem Funcional , Transtornos da Percepção/fisiopatologia , Esquizofrenia/fisiopatologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/diagnóstico por imagem , Suscetibilidade a Doenças/diagnóstico por imagem , Suscetibilidade a Doenças/fisiopatologia , Humanos , Transtornos da Percepção/diagnóstico por imagem , Transtornos da Percepção/etiologia , Esquizofrenia/diagnóstico por imagem
12.
Front Hum Neurosci ; 12: 364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30297991

RESUMO

The ability to rapidly adjust our actions to changes in the environment is a key function of human motor control. Previous work implicated the dorsal premotor cortex (dPMC) in the up-dating of action plans based on environmental cues. Here we used electroencephalography (EEG) to identify neural signatures of up-dating cue-action relationships in the dPMC and connected frontoparietal areas. Ten healthy subjects performed a pre-cued alternate choice task. Simple geometric shapes cued button presses with the right or left index finger. The shapes of the pre-cue and go-cue differed in two third of trials. In these incongruent trials, the go-cue prompted a re-evaluation of the pre-cued action plan, slowing response time relative to trials with identical cues. This re-evaluation selectively increased theta band activity without modifying activity in alpha and beta band. Source-based analysis revealed a widespread theta increase in dorsal and mesial frontoparietal areas, including dPMC, supplementary motor area (SMA), primary motor and posterior parietal cortices (PPC). Theta activity scaled positively with response slowing and increased more strongly when the pre-cue was invalid and required subjects to select the alternate response. Together, the results indicate that theta activity in dPMC and connected frontoparietal areas is involved in the re-adjustment of cue-induced action tendencies.

13.
Schizophr Res ; 197: 328-336, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29395612

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is one of the most common copy number variants and confers a markedly increased risk for schizophrenia. As such, 22q11.2DS is a homogeneous genetic liability model which enables studies to delineate functional abnormalities that may precede disease onset. Mismatch negativity (MMN), a brain marker of change detection, is reduced in people with schizophrenia compared to healthy controls. Using dynamic causal modelling (DCM), previous studies showed that top-down effective connectivity linking the frontal and temporal cortex is reduced in schizophrenia relative to healthy controls in MMN tasks. In the search for early risk-markers for schizophrenia we investigated the neural basis of change detection in a group with 22q11.2DS. We recorded high-density EEG from 19 young non-psychotic 22q11.2 deletion carriers, as well as from 27 healthy non-carriers with comparable age distribution and sex ratio, while they listened to a sequence of sounds arranged in a roving oddball paradigm. Despite finding no significant reduction in the MMN responses, whole-scalp spatiotemporal analysis of responses to the tones revealed a greater fronto-temporal N1 component in the 22q11.2 deletion carriers. DCM showed reduced intrinsic connection within right primary auditory cortex as well as in the top-down, connection from the right inferior frontal gyrus to right superior temporal gyrus for 22q11.2 deletion carriers although not surviving correction for multiple comparison. We discuss these findings in terms of reduced adaptation and a general increased sensitivity to tones in 22q11.2DS.


Assuntos
Percepção Auditiva/fisiologia , Síndrome de DiGeorge/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Córtex Pré-Frontal/fisiopatologia , Lobo Temporal/fisiopatologia , Adolescente , Adulto , Córtex Auditivo/fisiopatologia , Criança , Eletroencefalografia , Feminino , Heterozigoto , Humanos , Masculino , Modelos Teóricos , Análise Espaço-Temporal , Adulto Jovem
14.
Schizophr Bull ; 44(2): 388-397, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28521049

RESUMO

Background: The 22q11.2 deletion syndrome confers a markedly increased risk for schizophrenia. 22q11.2 deletion carriers without manifest psychotic disorder offer the possibility to identify functional abnormalities that precede clinical onset. Since schizophrenia is associated with a reduced cortical gamma response to auditory stimulation at 40 Hz, we hypothesized that the 40 Hz auditory steady-state response (ASSR) may be attenuated in nonpsychotic individuals with a 22q11.2 deletion. Methods: Eighteen young nonpsychotic 22q11.2 deletion carriers and a control group of 27 noncarriers with comparable age range (12-25 years) and sex ratio underwent 128-channel EEG. We recorded the cortical ASSR to a 40 Hz train of clicks, given either at a regular inter-stimulus interval of 25 ms or at irregular intervals jittered between 11 and 37 ms. Results: Healthy noncarriers expressed a stable ASSR to regular but not in the irregular 40 Hz click stimulation. Both gamma power and inter-trial phase coherence of the ASSR were markedly reduced in the 22q11.2 deletion group. The ability to phase lock cortical gamma activity to regular auditory 40 Hz stimulation correlated with the individual expression of negative symptoms in deletion carriers (ρ = -0.487, P = .041). Conclusions: Nonpsychotic 22q11.2 deletion carriers lack efficient phase locking of evoked gamma activity to regular 40 Hz auditory stimulation. This abnormality indicates a dysfunction of fast intracortical oscillatory processing in the gamma-band. Since ASSR was attenuated in nonpsychotic deletion carriers, ASSR deficiency may constitute a premorbid risk marker of schizophrenia.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva/fisiologia , Síndrome de DiGeorge/fisiopatologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Ritmo Gama/fisiologia , Adolescente , Criança , Feminino , Humanos , Masculino , Adulto Jovem
15.
BMC Psychiatry ; 15: 220, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384214

RESUMO

BACKGROUND: Neurodevelopmental brain disorders such as schizophrenia, autism and attention deficit hyperactivity disorder are complex disorders with heterogeneous etiologies. Schizophrenia and autism are difficult to treat and often cause major individual suffering largely owing to our limited understanding of the disease biology. Thus our understanding of the biological pathogenesis needs to be substantiated to enable development of more targeted treatment options with improved efficacy. Insights into the pre-morbid disease dynamics, the morbid condition and the underlying biological disease mechanisms may come from studies of subjects with homogenous etiologies. Breakthroughs in psychiatric genetics have shown that several genetic anomalies predispose for neurodevelopmental brain disorders. We have established a Danish research initiative to study the common microdeletion at chromosome 22q11.2, which is one of the genetic anomalies that confer high risk of schizophrenia, autism and attention deficit hyperactivity disorder. METHODS/DESIGN: The study applies a "cause-to-outcome" strategy to identify pre-morbid pathogenesis and underlying biological disease mechanisms of psychosis and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional effects across behavioral and neurophysiological traits of the 22q11 deletion in a recruited sample of Danish individuals. DISCUSSION: Identification of predictive pre-morbid clinical, cognitive, functional and structural brain alterations in 22q11 deletion carriers may alter current clinical practice from symptomatic therapy of manifest mental illness into early intervention strategies, which may also be applicable to at risk subjects without known etiology. Hopefully new insights into the biological disease mechanisms, which are mandatory for novel drug developments, can improve the outcome of the pharmacological interventions in psychiatry.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Autístico/genética , Esquizofrenia/genética , Estudos de Casos e Controles , Criança , Serviços de Saúde da Criança , Aberrações Cromossômicas , Cromossomos Humanos Par 22 , Dinamarca , Humanos , Serviços de Saúde Mental , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...