Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057392

RESUMO

Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.

2.
Harmful Algae ; 137: 102681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003025

RESUMO

In May-June 2019, the microalga Chrysochromulina leadbeateri caused a massive fish-killing event in several fjords in Northern Norway, resulting in the largest direct impact ever on aquaculture in northern Europe due to toxic algae. Motivated by the fact that no algal toxins have previously been described from C. leadbeateri, we set out to investigate the chemical nature and toxicity of secondary metabolites in extracts of two strains (UIO 393, UIO 394) isolated from the 2019 bloom, as well as one older strain (UIO 035) isolated during a bloom in Northern Norway in 1991. Initial LC-DAD-MS/MS-based molecular networking analysis of the crude MeOH extracts of the cultivated strains showed that their profiles of small organic molecules, including a large number of known lipids, were very similar, suggesting that the same class of toxin(s) were likely the causative agents of the two harmful algal bloom (HAB) events. Next, bioassay-guided fractionation using the RTgill-W1 cell line and metabolomics analysis pointed to a major compound affording [M + H]+ ions at m/z 1399.8333 as a possible toxin, corresponding to a compound with the formula C67H127ClO27. Moreover, our study unveiled a series of minor analogues exhibiting distinct patterns of chlorination and sulfation, together defining a new family of compounds, which we propose to name leadbeaterins. Remarkably, these suspected toxins were detected in situ in samples collected during the 2019 bloom close to Tromsø, thereby consistent with a role in fish kills. The elemental compositions of the putative C. leadbeateri ichthyotoxins strongly indicate them to be long linear polyhydroxylated polyketides, structurally similar to sterolysins reported from a number of dinoflagellates.


Assuntos
Proliferação Nociva de Algas , Toxinas Marinhas , Noruega , Toxinas Marinhas/toxicidade , Toxinas Marinhas/química , Toxinas Marinhas/análise , Estuários , Animais , Espectrometria de Massas em Tandem , Haptófitas/química
3.
Appl Environ Microbiol ; 90(7): e0034224, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899884

RESUMO

Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.


Assuntos
Malus , Penicillium , Metabolismo Secundário , Malus/microbiologia , Penicillium/metabolismo , Penicillium/isolamento & purificação , Penicillium/genética , Fungos/classificação , Fungos/metabolismo , Fungos/genética , Fungos/isolamento & purificação , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/classificação , Metabolômica , Microbiota , Biodiversidade , Micobioma
4.
IMA Fungus ; 15(1): 10, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582937

RESUMO

The Apiospora genus comprises filamentous fungi with promising potential, though its full capabilities remain undiscovered. In this study, we present the first genome assembly of an Apiospora arundinis isolate, demonstrating a highly complete and contiguous assembly estimated to 48.8 Mb, with an N99 of 3.0 Mb. Our analysis predicted a total of 15,725 genes, with functional annotations for 13,619 of them, revealing a fungus capable of producing very high amounts of carbohydrate-active enzymes (CAZymes) and secondary metabolites. Through transcriptomic analysis, we observed differential gene expression in response to varying growth media, with several genes related to carbohydrate metabolism showing significant upregulation when the fungus was cultivated on a hay-based medium. Finally, our metabolomic analysis unveiled a fungus capable of producing a diverse array of metabolites.

5.
Nat Prod Rep ; 40(2): 237-274, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35587705

RESUMO

Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.


Assuntos
Aspergillus , Genoma Fúngico , Humanos , Aspergillus/genética , Biologia Computacional , Metabolismo Secundário/genética , Família Multigênica , Vias Biossintéticas/genética
6.
J Fungi (Basel) ; 8(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36547612

RESUMO

Aspergillus section Flavi is a fungal group that is important in food because it contains spoilage and potentially aflatoxigenic species. Aflatoxins are metabolites that are harmful to human and animal health and have been recognized as the primary natural contaminant in food. Therefore, recognizing the biodiversity of this group in food is necessary to reduce risks to public health. Our study aimed to investigate the diversity of Aspergillus section Flavi isolated from Brazilian foodstuffs such as cassava, sugarcane, black pepper, paprika, Brazil nuts, yerba-mate, peanuts, rice, and corn. A polyphasic approach integrating phenotypic data and multilocus genotypic analyses (CaM, BenA, and RPB2) was performed for 396 strains. Two new species in the Aspergillus subgenus Circumdati section Flavi are proposed using maximum-likelihood analysis, Bayesian inference, and coalescence-based methods: Aspergillus saccharicola sp. nov. and Aspergillus annui sp. nov. A. saccharicola sp. nov. belongs to the series Flavi, is a potentially aflatoxigenic species (B1, B2, G1, and G2), closely related to Aspergillus arachidicola, and was found mostly in sugarcane. A. annui sp. nov. was isolated from samples of sweet paprika. To accommodate A. annui sp. nov., a new series Annuorum was proposed.

7.
ACS Chem Biol ; 17(9): 2411-2417, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36040247

RESUMO

Actinomycetes make a wealth of complex, structurally diverse natural products, and a key challenge is to link them to their biosynthetic gene clusters and delineate the reactions catalyzed by each of the enzymes. Here, we report the biosynthetic gene cluster for pyracrimycin A, a set of nine genes that includes a core nonribosomal peptide synthase (pymB) that utilizes serine and proline as precursors and a monooxygenase (pymC) that catalyzes Baeyer-Villiger oxidation. The cluster is similar to the one for brabantamide A; however, pyracrimycin A biosynthesis differs in that feeding experiments with isotope-labeled serine and proline suggest that a ring opening reaction takes place and a carbon is lost from serine downstream of the oxidation reaction. Based on these data, we propose a full biosynthesis pathway for pyracrimycin A.


Assuntos
Produtos Biológicos , Streptomyces , Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , Carbono/metabolismo , Oxigenases de Função Mista/metabolismo , Família Multigênica , Prolina/metabolismo , Pirróis , Serina/metabolismo , Streptomyces/metabolismo
8.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215359

RESUMO

PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin's antiseizure action.

9.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056832

RESUMO

Recent reports of antiepileptic activity of the fungal alkaloid TMC-120B have renewed the interest in this natural product. Previous total syntheses of TMC-120B comprise many steps and have low overall yields (11-17 steps, 1.5-2.9% yield). Thus, to access this compound more efficiently, we herein present a concise and significantly improved total synthesis of the natural product. Our short synthesis relies on two key cyclization steps to assemble the central scaffold: isoquinoline formation via an ethynyl-imino cyclization and an intramolecular Friedel-Crafts reaction to form the furanone.


Assuntos
Alcaloides/química , Aspergillus/química , Benzofuranos/síntese química , Isoquinolinas/química , Benzofuranos/química , Ciclização , Isoquinolinas/síntese química , Estrutura Molecular , Estereoisomerismo
10.
Org Lett ; 24(3): 804-808, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35045257

RESUMO

A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.


Assuntos
Aspergillus/metabolismo , Piridonas/metabolismo , Aspergillus oryzae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Deleção de Genes , Humanos , Família Multigênica/genética , Policetídeos/metabolismo , Policetídeos/farmacologia , Piridonas/farmacologia , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
11.
J Nat Prod ; 85(1): 25-33, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35045259

RESUMO

The number of species in Aspergillus section Flavi has recently increased to 36 and includes some of the most important and well-known species in the genus Aspergillus. Numerous secondary metabolites, especially mycotoxins, have been reported from species such as A. flavus; however many of the more recently described species are less studied from a chemical point of view. This paper describes the use of MS/MS-based molecular networking to investigate the metabolome of A. caelatus leading to the discovery of several new diketopiperazine dimers and aspergillicins. An MS-guided isolation procedure yielded six new compounds, including asperazines D-H (1-5) and aspergillicin H (6). Asperazines G and H are artifacts derived from asperazines E and F formed during the separation process by formic acid. Two known compounds, aspergillicins A and C (7 and 8), were isolated from the same strain. Structures were elucidated by analyzing their HR-MS/MS and NMR spectroscopic data. The absolute configuration of asperazines D-F and aspergillicin H were deduced from the combination of NMR, Marfey's method, and ECD analyses.


Assuntos
Aspergillus/química , Depsipeptídeos/química , Dicetopiperazinas/química , Dimerização , Micotoxinas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas em Tandem
12.
Nat Prod Res ; 36(8): 2043-2048, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33161768

RESUMO

A chemical investigation of Aspergillus californicus IBT 16748 led to the isolation of two new oxepine-pyrimidinone-ketopiperazine type nonribosomal peptides oxepinamides L (1) and M (2). Their structures were characterised by spectroscopic analysis including HRESIMS, 1D and 2D NMR. The absolute structure of 1 was assigned by ECD calculation. The antibacterial and cytotoxic properties of 1 were evaluated.


Assuntos
Oxepinas , Pirimidinonas , Aspergillus , Estrutura Molecular , Peptídeos , Pirimidinonas/farmacologia
13.
J Nat Prod ; 84(9): 2554-2567, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34520205

RESUMO

Goniodomin A (GDA, 1) is a phycotoxin produced by at least four species of Alexandrium dinoflagellates that are found globally in brackish estuaries and lagoons. It is a linear polyketide with six oxygen heterocyclic rings that is cyclized into a macrocyclic structure via lactone formation. Two of the oxygen heterocycles in 1 comprise a spiro-bis-pyran, whereas goniodomin B (GDB) contains a 2,7-dioxabicyclo[3.3.1]nonane ring system fused to a pyran. When H2O is present, 1 undergoes facile conversion to isomer GDB and to an α,ß-unsaturated ketone, goniodomin C (GDC, 7). GDB and GDC can be formed from GDA by cleavage of the spiro-bis-pyran ring system. GDA, but not GDB or GDC, forms a crown ether-type complex with K+. Equilibration of GDA with GDB and GDC is observed in the presence of H+ and of Na+, but the equilibrated mixtures revert to GDA upon addition of K+. Structural differences have been found between the K+ and Na+ complexes. The association of GDA with K+ is strong, while that with Na+ is weak. The K+ complex has a compact, well-defined structure, whereas Na+ complexes are an ill-defined mixture of species. Analyses of in vitro A. monilatum and A. hiranoi cultures indicate that only GDA is present in the cells; GDB and GDC appear to be postharvest transformation products.


Assuntos
Ácidos/química , Éteres/química , Macrolídeos/química , Metais Alcalinos/química , Catálise , Dinoflagellida/química , Simulação de Dinâmica Molecular , Estrutura Molecular
14.
Appl Microbiol Biotechnol ; 105(12): 5113-5121, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34106309

RESUMO

In recent years, there has been an increasing demand for the replacement of synthetic food colorants with naturally derived alternatives. Filamentous fungi are prolific producers of secondary metabolites including polyketide-derived pigments, many of which have not been fully characterized yet. During our ongoing investigations of black aspergilli, we noticed that Aspergillus homomorphus turned yellow when cultivated on malt extract agar plates. Chemical discovery guided by UV and MS led to the isolation of two novel yellow natural products, and their structures were elucidated as aromatic α-pyrones homopyrones A (1) and B (2) by HRMS and NMR. Combined investigations including retro-biosynthesis, genome mining, and gene deletions successfully linked both compounds to their related biosynthetic gene clusters. This demonstrated that homopyrones are biosynthesized by using cinnamoyl-CoA as the starter unit, followed by extension with three malonyl-CoA units, and lactonization to give the core hybrid backbone structure. The polyketide synthase AhpA includes a C-methylation domain, which however seems to be promiscuous since only 2 is C-methylated. Altogether, the homopyrones represent a rare case of hybrid phenylpropanoid- and polyketide-derived natural products in filamentous fungi. KEY POINTS: • Homopyrones represent a rare type of fungal polyketides synthesized from cinnamic-CoA. • CRISPR/Cas9 technology has been firstly applied in Aspergillus homomorphus.


Assuntos
Policetídeos , Aspergillus , Fungos , Policetídeo Sintases
15.
J Nat Prod ; 84(4): 979-985, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33656895

RESUMO

Five new polyketides were isolated from the rare filamentous fungus Aspergillus californicus IBT 16748 including calidiol A (1); three phthalide derivatives califuranones A1, A2, and B (2-4); and a pair of enantiomers (-)-calitetralintriol A (-5) and (+)-calitetralintriol A (+5) together with four known metabolites (6-9). The structures of the new products were established by extensive spectroscopic analyses including HRMS and 1D and 2D NMR. The absolute configurations of two diastereomers 2 and 3 and the enantiomers (-5) and (+5) were assigned by comparing their experimental and calculated ECD data, whereas the absolute configuration of 4 was proposed by analogy. Compound 1 showed moderate activity against methicillin-resistant Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Aspergillus/química , Policetídeos/farmacologia , Antibacterianos/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/isolamento & purificação
16.
mSystems ; 6(1)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622852

RESUMO

Bacillus subtilis produces a wide range of secondary metabolites providing diverse plant growth-promoting and biocontrol abilities. These secondary metabolites include nonribosomal peptides with strong antimicrobial properties, causing either cell lysis, pore formation in fungal membranes, inhibition of certain enzymes, or bacterial protein synthesis. However, the natural products of B. subtilis are mostly studied either in laboratory strains or in individual isolates, and therefore, a comparative overview of secondary metabolites from various environmental B. subtilis strains is missing. In this study, we isolated 23 B. subtilis strains from 11 sampling sites, compared the fungal inhibition profiles of wild types and their nonribosomal peptide mutants, followed the production of targeted lipopeptides, and determined the complete genomes of 13 soil isolates. We discovered that nonribosomal peptide production varied among B. subtilis strains coisolated from the same soil samples. In vitro antagonism assays revealed that biocontrol properties depend on the targeted plant pathogenic fungus and the tested B. subtilis isolate. While plipastatin alone is sufficient to inhibit Fusarium spp., a combination of plipastatin and surfactin is required to hinder growth of Botrytis cinerea Detailed genomic analysis revealed that altered nonribosomal peptide production profiles in specific isolates are due to missing core genes, nonsense mutation, or potentially altered gene regulation. Our study combines microbiological antagonism assays with chemical nonribosomal peptide detection and biosynthetic gene cluster predictions in diverse B. subtilis soil isolates to provide a broader overview of the secondary metabolite chemodiversity of B. subtilis IMPORTANCE Secondary or specialized metabolites with antimicrobial activities define the biocontrol properties of microorganisms. Members of the Bacillus genus produce a plethora of secondary metabolites, of which nonribosomally produced lipopeptides in particular display strong antifungal activity. To facilitate the prediction of the biocontrol potential of new Bacillus subtilis isolates, we have explored the in vitro antifungal inhibitory profiles of recent B. subtilis isolates, combined with analytical natural product chemistry, mutational analysis, and detailed genome analysis of biosynthetic gene clusters. Such a comparative analysis helped to explain why selected B. subtilis isolates lack the production of certain secondary metabolites.

17.
Mar Drugs ; 19(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498522

RESUMO

The marine-derived fungus Stilbella fimetaria is a chemically talented fungus producing several classes of bioactive metabolites, including meroterpenoids of the ascochlorin family. The targeted dereplication of fungal extracts by UHPLC-DAD-QTOF-MS revealed the presence of several new along with multiple known ascochlorin analogues (19-22). Their structures and relative configuration were characterized by 1D and 2D NMR. Further targeted dereplication based on a novel 1,4-benzoquinone sesquiterpene derivative, fimetarin A (22), resulted in the identification of three additional fimetarin analogues, fimetarins B-D (23-25), with their tentative structures proposed from detailed MS/HRMS analysis. In total, four new and eight known ascochlorin/fimetarin analogues were tested for their antimicrobial activity, identifying the analogues with a 5-chloroorcylaldehyde moiety to be more active than the benzoquinone analogue. Additionally, the presence of two conjugated double bonds at C-2'/C-3' and C-4'/C-5' were found to be essential for the observed antifungal activity, whereas the single, untailored bonds at C-4'/C-5' and C-8'/C-9' were suggested to be necessary for the observed antibacterial activity.


Assuntos
Alcenos/isolamento & purificação , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Hypocreales/isolamento & purificação , Fenóis/isolamento & purificação , Alcenos/química , Alcenos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Hypocreales/química , Fenóis/química , Fenóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
18.
Front Fungal Biol ; 2: 719420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744124

RESUMO

Aspergillus section Flavi includes some of the most famous mycotoxin producing filamentous fungi known to mankind. In recent years a number of new species have been included in section Flavi, however these species have been much less studied from a chemical point of view. In this study, we explored one representative strain of a total of 28 fungal species in section Flavi by systematically evaluating the relationship between taxonomy and secondary metabolites with LC-MS/MS analysis for the first time and dereplication through an in-house database and the Global Natural Product Social Molecular Networking (GNPS) platform. This approach allowed rapid identification of two new cyclopiazonic acid producers (A. alliaceus and A. arachidicola) and two new tenuazonic acid producers (A. arachidicola and A. leporis). Moreover, for the first time we report species from section Flavi to produce fumifungin and sphingofungins B-D. Altogether, this study emphasizes that the chemical diversity of species in genus Aspergillus section Flavi is larger than previously recognized, and especially that understudied species are prolific producers of important mycotoxins such as fumi- and sphingofungins not previously reported from this section. Furthermore, our work demonstrates Global Natural Product Social (GNPS) Molecular Networking as a powerful tool for large-scale chemotaxonomic analysis of closely related species in filamentous fungi.

19.
J Antibiot (Tokyo) ; 74(2): 111-114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32999431

RESUMO

Two new naphthyl-products calinaphthyltriol A (1) and calinaphthalenone A (2) were isolated from Aspergillus californicus IBT 16748 together with one known compound ophiobolin X (3). Their structures were elucidated by extensive spectroscopic analyses. The absolute configuration of 2 was solved by comparing its optical rotation with data for the known compounds 4, 5, and 6 as well as theoretical calculations. The antibacterial and cytotoxic activities of 1 and 3 were evaluated. Both compounds did not show antibacterial activity (MIC > 96 µg·ml-1) against a few selected clinically relevant Gram positive and Gram negative bacterial strains. However, they showed moderate cytotoxicity against HL-60 cell line with IC50 values of 18 and 24 µg·ml-1, respectively.


Assuntos
Aspergillus/química , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Fermentação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HL-60 , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Estrutura Molecular
20.
Sci Rep ; 10(1): 21630, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303891

RESUMO

Novel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).


Assuntos
4-Quinolonas/metabolismo , Anti-Infecciosos/metabolismo , Pseudoalteromonas/metabolismo , Pseudomonas/metabolismo , Pirróis/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/genética , Genes Bacterianos , Biologia Marinha , Espectrometria de Massas , Hibridização de Ácido Nucleico , Filogenia , Pseudoalteromonas/classificação , Pseudoalteromonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA