Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107210, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485371

RESUMO

Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.

2.
Microbiol Spectr ; 11(3): e0069623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199620

RESUMO

Coxiella burnetii is a Gram-negative pathogen that infects a variety of mammalian hosts. Infection of domesticated ewes can cause fetal abortion, whereas acute human infection normally manifests as the flu-like illness Q fever. Successful host infection requires replication of the pathogen within the lysosomal Coxiella-containing vacuole (CCV). The bacterium encodes a type 4B secretion system (T4BSS) that delivers effector proteins into the host cell. Disruption of C. burnetii T4BSS effector export abrogates CCV biogenesis and bacterial replication. Over 150 C. burnetii T4BSS substrates have been designated often based on heterologous protein translocation by the Legionella pneumophila T4BSS. Cross-genome comparisons predict that many of these T4BSS substrates are truncated or absent in the acute-disease reference strain C. burnetii Nine Mile. This study investigated the function of 32 proteins conserved among diverse C. burnetii genomes that are reported to be T4BSS substrates. Despite being previously designated T4BSS substrates, many of the proteins were not translocated by C. burnetii when expressed fused to the CyaA or BlaM reporter tags. CRISPR interference (CRISPRi) indicated that of the validated C. burnetii T4BSS substrates, CBU0122, CBU1752, CBU1825, and CBU2007 promote C. burnetii replication in THP-1 cells and CCV biogenesis in Vero cells. When expressed in HeLa cells tagged at its C or N terminus with mCherry, CBU0122 localized to the CCV membrane and the mitochondria, respectively. Collectively, these data further define the repertoire of bona fide C. burnetii T4BSS substrates. IMPORTANCE Coxiella burnetii secretes effector proteins via a T4BSS that are required for successful infection. Over 150 C. burnetii proteins are reported to be T4BSS substrates and often by default considered putative effectors, but few have assigned functions. Many C. burnetii proteins were designated T4BSS substrates using heterologous secretion assays in L. pneumophila and/or have coding sequences that are absent or pseudogenized in clinically relevant C. burnetii strains. This study examined 32 previously reported T4BSS substrates that are conserved among C. burnetii genomes. Of the proteins tested that were previously designated T4BSS substrates using L. pneumophila, most were not exported by C. burnetii. Several T4BSS substrates that were validated in C. burnetii also promoted pathogen intracellular replication and one trafficked to late endosomes and the mitochondria in a manner suggestive of effector activity. This study identified several bona fide C. burnetii T4BSS substrates and further refined the methodological criteria for their designation.


Assuntos
Coxiella burnetii , Chlorocebus aethiops , Animais , Feminino , Ovinos , Humanos , Coxiella burnetii/genética , Células HeLa , Células Vero , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacúolos/microbiologia , Interações Hospedeiro-Patógeno , Mamíferos
3.
J Bacteriol ; 205(3): e0041622, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36847507

RESUMO

Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever in humans. C. burnetii transitions between a replicative, metabolically active large-cell variant (LCV) and a spore-like, quiescent small-cell variant (SCV) as a likely mechanism to ensure survival between host cells and mammalian hosts. C. burnetii encodes three canonical two-component systems, four orphan hybrid histidine kinases, five orphan response regulators, and a histidine phosphotransfer protein, which have been speculated to play roles in the signaling required for C. burnetii morphogenesis and virulence. However, very few of these systems have been characterized. By employing a CRISPR interference system for genetic manipulation of C. burnetii, we created single- and multigene transcriptional knockdown strains targeting most of these signaling genes. Through this, we revealed a role for the C. burnetii PhoBR canonical two-component system in virulence, regulation of [Pi] maintenance, and Pi transport. We also outline a novel mechanism by which PhoBR function may be regulated by an atypical PhoU-like protein. We also determined that the GacA.2/GacA.3/GacA.4/GacS orphan response regulators coordinately and disparately regulate expression of SCV-associated genes in C. burnetii LCVs. These foundational results will inform future studies on the role of C. burnetii two-component systems in virulence and morphogenesis. IMPORTANCE C. burnetii is an obligate intracellular bacterium with a spore-like stability allowing it to survive long periods of time in the environment. This stability is likely due to its biphasic developmental cycle, whereby it can transition from an environmentally stable small-cell variant (SCV) to a metabolically active large-cell variant (LCV). Here, we define the role of two-component phosphorelay systems (TCS) in C. burnetii's ability to survive within the harsh environment contained in the phagolysosome of host cells. We show that the canonical PhoBR TCS has an important role in C. burnetii virulence and phosphate sensing. Further examination of the regulons controlled by orphan regulators indicated a role in modulating gene expression of SCV-associated genes, including genes essential for cell wall remodeling.


Assuntos
Coxiella burnetii , Febre Q , Animais , Humanos , Coxiella burnetii/genética , Histidina/metabolismo , Parede Celular , Mamíferos
4.
mBio ; 13(2): e0024022, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35258332

RESUMO

Bacterial type IV secretion systems (T4SSs) are macromolecular machines that translocate effector proteins across multiple membranes into infected host cells. Loss of function mutations in genes encoding protein components of the T4SS render bacteria avirulent, highlighting the attractiveness of T4SSs as drug targets. Here, we designed an automated high-throughput screening approach for the identification of compounds that interfere with the delivery of a reporter-effector fusion protein from Legionella pneumophila into RAW264.7 mouse macrophages. Using a fluorescence resonance energy transfer (FRET)-based detection assay in a bacteria/macrophage coculture format, we screened a library of over 18,000 compounds and, upon vetting compound candidates in a variety of in vitro and cell-based secondary screens, isolated several hits that efficiently interfered with biological processes that depend on a functional T4SS, such as intracellular bacterial proliferation or lysosomal avoidance, but had no detectable effect on L. pneumophila growth in culture medium, conditions under which the T4SS is dispensable. Notably, the same hit compounds also attenuated, to varying degrees, effector delivery by the closely related T4SS from Coxiella burnetii, notably without impacting growth of this organism within synthetic media. Together, these results support the idea that interference with T4SS function is a possible therapeutic intervention strategy, and the emerging compounds provide tools to interrogate at a molecular level the regulation and dynamics of these virulence-critical translocation machines. IMPORTANCE Multi-drug-resistant pathogens are an emerging threat to human health. Because conventional antibiotics target not only the pathogen but also eradicate the beneficial microbiota, they often cause additional clinical complications. Thus, there is an urgent need for the development of "smarter" therapeutics that selectively target pathogens without affecting beneficial commensals. The bacterial type IV secretion system (T4SS) is essential for the virulence of a variety of pathogens but dispensable for bacterial viability in general and can, thus, be considered a pathogen's Achilles heel. By identifying small molecules that interfere with cargo delivery by the T4SS from two important human pathogens, Legionella pneumophila and Coxiella burnetii, our study represents the first step in our pursuit toward precision medicine by developing pathogen-selective therapeutics capable of treating the infections without causing harm to commensal bacteria.


Assuntos
Coxiella burnetii , Legionella pneumophila , Animais , Sistemas de Secreção Bacterianos/metabolismo , Legionella pneumophila/metabolismo , Camundongos , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Virulência/genética
5.
Nat Microbiol ; 6(11): 1398-1409, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675384

RESUMO

La Crosse virus (LACV) is a mosquito-borne orthobunyavirus that causes approximately 60 to 80 hospitalized pediatric encephalitis cases in the United States yearly. The primary treatment for most viral encephalitis, including LACV, is palliative care, and specific antiviral therapeutics are needed. We screened the National Center for Advancing Translational Sciences library of 3,833 FDA-approved and bioactive small molecules for the ability to inhibit LACV-induced death in SH-SY5Y neuronal cells. The top three hits from the initial screen were validated by examining their ability to inhibit virus-induced cell death in multiple neuronal cell lines. Rottlerin consistently reduced LACV-induced death by 50% in multiple human and mouse neuronal cell lines with an effective concentration of 0.16-0.69 µg ml-1 depending on cell line. Rottlerin was effective up to 12 hours post-infection in vitro and inhibited virus particle trafficking from the Golgi apparatus to trans-Golgi vesicles. In human inducible pluripotent stem cell-derived cerebral organoids, rottlerin reduced virus production by one log and cell death by 35% compared with dimethyl sulfoxide-treated controls. Administration of rottlerin in mice by intraperitoneal or intracranial routes starting at 3 days post-infection decreased disease development by 30-50%. Furthermore, rottlerin also inhibited virus replication of other pathogenic California serogroup orthobunyaviruses (Jamestown Canyon and Tahyna virus) in neuronal cell lines.


Assuntos
Acetofenonas/administração & dosagem , Antivirais/administração & dosagem , Benzopiranos/administração & dosagem , Encefalite da Califórnia/virologia , Complexo de Golgi/virologia , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/fisiologia , Neurônios/virologia , Animais , Encefalite da Califórnia/tratamento farmacológico , Feminino , Complexo de Golgi/efeitos dos fármacos , Humanos , Vírus La Crosse/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501284

RESUMO

Macrophage parasitism by Coxiella burnetii, the cause of human Q fever, requires the translocation of proteins with effector functions directly into the host cell cytosol via a Dot/Icm type 4B secretion system (T4BSS). Secretion by the analogous Legionella pneumophila T4BSS involves signal sequences within the C-terminal and internal domains of effector proteins. The cytoplasmic chaperone pair IcmSW promotes secretion and binds internal sites distinct from signal sequences. In the present study, we investigated requirements of C. burnetii IcmS for host cell parasitism and effector translocation. A C. burnetiiicmS deletion mutant (ΔicmS) exhibited impaired replication in Vero epithelial cells, deficient formation of the Coxiella-containing vacuole, and aberrant T4BSS secretion. Three secretion phenotypes were identified from a screen of 50 Dot/Icm substrates: IcmS dependent (secreted by only wild-type bacteria), IcmS independent (secreted by both wild-type and ΔicmS bacteria), or IcmS inhibited (secreted by only ΔicmS bacteria). Secretion was assessed for N-terminal or C-terminal truncated forms of CBU0794 and CBU1525. IcmS-inhibited secretion of CBU1525 required a C-terminal secretion signal whereas IcmS-dependent secretion of CBU0794 was directed by C-terminal and internal signals. Interchange of the C-terminal 50 amino acids of CBU0794 and CBU1525 revealed that sites within the C terminus regulate IcmS dependency. Glutathione S-transferase-tagged IcmSW bound internal sequences of IcmS-dependent and -inhibited substrates. Thus, the growth defect of the C. burnetii ΔicmS strain is associated with a loss of T4BSS chaperone activity that both positively and negatively regulates effector translocation.IMPORTANCE The intracellular pathogen Coxiella burnetii employs a type 4B secretion system (T4BSS) that promotes growth by translocating effectors of eukaryotic pathways into host cells. T4BSS regulation modeled in Legionella pneumophila indicates IcmS facilitates effector translocation. Here, we characterized type 4B secretion by a Coxiella ΔicmS mutant that exhibits intracellular growth defects. T4BSS substrates demonstrated increased, equivalent, or decreased secretion by the ΔicmS mutant relative to wild-type Coxiella Similar to the Legionella T4BSS, IcmS dependency in Coxiella was determined by C-terminal and/or internal secretion signals. However, IcmS inhibited secretion of some effectors by Coxiella that were previously shown to be translocated by Legionella Thus, Coxiella has a unique IcmS regulatory mechanism that both positively and negatively regulates T4BSS export.


Assuntos
Proteínas de Bactérias/genética , Coxiella burnetii/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Chaperonas Moleculares/genética , Sistemas de Secreção Tipo IV/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Chlorocebus aethiops , Coxiella burnetii/metabolismo , Citosol/metabolismo , Citosol/microbiologia , Deleção de Genes , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Chaperonas Moleculares/metabolismo , Fenótipo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células THP-1 , Transformação Bacteriana , Sistemas de Secreção Tipo IV/metabolismo , Células Vero
7.
Virulence ; 10(1): 133-150, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30782062

RESUMO

Coxiella burnetii is an intracellular, gram-negative bacterium that causes the zoonosis Q fever. This disease typically presents as an acute flu-like illness with persistent, focalized infections occurring less frequently. Clinical outcomes of Q fever have been associated with distinct genomic groups of C. burnetii, suggesting that gene content is responsible for virulence potential. To investigate this hypothesis, the virulence of thirteen C. burnetii strains (representing genomic groups I-VI) was evaluated in a guinea pig infection model by intraperitoneal injection. Seven strains caused a sustained fever (at least two days ≥39.5°C) in at least half of the animals within each experimental group. At fourteen days post infection, animals were euthanized and additional endpoints were evaluated, including splenomegaly and serology. The magnitude of these endpoints roughly correlated with the onset, duration, and severity of fever. The most severe disease was caused by group I strains. Intermediate and no virulence were evidenced following infection with group II-V and group VI strains, respectively. Flow cytometric analysis of the mesenteric lymph nodes revealed decreased CD4+ T cell frequency following infection with highly virulent group I strains. These findings buttress the hypothesis that the pathogenic potential of C. burnetii strains correlates with genomic grouping. These data, combined with comparative genomics and genetic manipulation, will improve our understanding of C. burnetii virulence determinants.


Assuntos
Coxiella burnetii/patogenicidade , Febre Q/patologia , Fatores de Virulência/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Coxiella burnetii/genética , Modelos Animais de Doenças , Feminino , Genoma Bacteriano , Cobaias , Febre Q/imunologia , Baço/microbiologia , Virulência/genética
8.
mBio ; 10(1)2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723133

RESUMO

The Q fever agent Coxiella burnetii is a Gram-negative bacterium that invades macrophages and replicates inside a specialized lysosomal vacuole. The pathogen employs a type 4B secretion system (T4BSS) to deliver effector proteins into the host cell that modify the Coxiella-containing vacuole (CCV) into a replication-permissive niche. Mature CCVs are massive degradative organelles that acquire lysosomal proteins. Inhibition of mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) kinase by nutrient deprivation promotes autophagy and lysosome fusion, as well as activation of the transcription factors TFE3 and TFEB (TFE3/B), which upregulates expression of lysosomal genes. Here, we report that C. burnetii inhibits mTORC1 as evidenced by impaired localization of mTORC1 to endolysosomal membranes and decreased phosphorylation of elF4E-binding protein 1 (4E-BP1) and S6 kinase 1 in infected cells. Infected cells exhibit increased amounts of autophagy-related proteins protein 1A/1B-light chain 3 (LC3) and p62 as well as of activated TFE3. However, C. burnetii did not accelerate autophagy or block autophagic flux triggered by cell starvation. Activation of autophagy or transcription by TFE3/B increased CCV expansion without enhancing bacterial replication. By contrast, knockdown of tuberous sclerosis complex 1 (TSC1) or TSC2, which hyperactivates mTORC1, impaired CCV expansion and bacterial replication. Together, these data demonstrate that specific inhibition of mTORC1 by C. burnetii, but not amplified cell catabolism via autophagy, is required for optimal pathogen replication. These data reveal a complex interplay between lysosomal function and host cell metabolism that regulates C. burnetii intracellular growth.IMPORTANCECoxiella burnetii is an intracellular pathogenic bacterium that replicates within a lysosomal vacuole. Biogenesis of the Coxiella-containing vacuole (CCV) requires effector proteins delivered into the host cell cytosol by the type 4B secretion system (T4BSS). Modifications to lysosomal physiology required for pathogen replication within the CCV are poorly understood. Mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) is a master kinase that regulates lysosome structure and function. Nutrient deprivation inhibits mTORC1, which promotes cell catabolism in the form of accelerated autophagy and increased lysosome biosynthesis. Here, we report that C. burnetii growth is enhanced by T4BSS-dependent inhibition of mTORC1 that does not activate autophagy. Canonical inhibition of mTORC1 by starvation or inhibitor treatment that induces autophagic flux does not benefit C. burnetii growth. Furthermore, hyperactivation of mTORC1 impairs bacterial replication. These findings indicate that C. burnetii inhibition of mTORC1 without accelerated autophagy promotes bacterial growth.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Fagossomos/microbiologia , Humanos , Células THP-1
9.
PLoS Pathog ; 14(4): e1007005, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668757

RESUMO

Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV) and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1) and cationic-independent mannose-6-phosphate receptor (CI-M6PR), respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the endosomal system is required for CCV generation. These findings delineate which of the many actin related events that shape the endosomal compartment are important for CCV formation.


Assuntos
Actinas/metabolismo , Coxiella burnetii/patogenicidade , Endossomos/microbiologia , Proteínas dos Microfilamentos/fisiologia , Febre Q/microbiologia , Vacúolos/microbiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Polimerização , Transporte Proteico , Febre Q/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-28293541

RESUMO

Coxiella burnetii is an obligate intracellular pathogen and the causative agent of human Q fever. Replication of the bacterium within a large parasitophorous vacuole (PV) resembling a host phagolysosome is required for pathogenesis. PV biogenesis is a pathogen driven process that requires engagement of several host cell vesicular trafficking pathways to acquire vacuole components. The goal of this study was to determine if infection by C. burnetii modulates endolysosomal flux to potentially benefit PV formation. HeLa cells, infected with C. burnetii or left uninfected, were incubated with fluorescent transferrin (Tf) for 0-30 min, and the amount of Tf internalized by cells quantitated by high-content imaging. At 3 and 5 days, but not 1 day post-infection, the maximal amounts of fluorescent Tf internalized by infected cells were significantly greater than uninfected cells. The rates of Tf uptake and recycling were the same for infected and uninfected cells; however, residual Tf persisted in EEA.1 positive compartments adjacent to large PV after 30 min of recycling in the absence of labeled Tf. On average, C. burnetii-infected cells contained significantly more CD63-positive endosomes than uninfected cells. In contrast, cells containing large vacuoles generated by Chlamydia trachomatis exhibited increased rates of Tf internalization without increased CD63 expression. Our results suggest that C. burnetii infection expands the endosomal system to increase capacity for endocytic material. Furthermore, this study demonstrates the power of high-content imaging for measurement of cellular responses to infection by intracellular pathogens.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Endossomos/microbiologia , Endossomos/ultraestrutura , Vacúolos/microbiologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/citologia , Chlamydia trachomatis/fisiologia , Coxiella burnetii/citologia , Coxiella burnetii/patogenicidade , Endocitose , Endossomos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Lisossomos , Microscopia de Fluorescência , Fagossomos/microbiologia , Tetraspanina 30/metabolismo , Vacúolos/metabolismo
11.
PLoS One ; 12(3): e0173528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278296

RESUMO

Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1 transporter does not negatively impact NMII growth. Results with NMII were recapitulated in primary macrophages where C57BL/6J Nramp1+ BMDM efficiently killed Salmonella enterica serovar Typhimurium. M-CSF differentiated murine macrophages from bone marrow and conditional ER-Hoxb8 myeloid progenitors will be useful ex vivo models for studying Coxiella-macrophage interactions.


Assuntos
Medula Óssea/microbiologia , Coxiella burnetii/crescimento & desenvolvimento , Macrófagos/microbiologia , Febre Q/microbiologia , Animais , Medula Óssea/metabolismo , Células Cultivadas , Fatores Estimuladores de Colônias/metabolismo , Coxiella burnetii/patogenicidade , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Febre Q/metabolismo , Febre Q/patologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Future Microbiol ; 11: 919-39, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27418426

RESUMO

Invasion of macrophages and replication within an acidic and degradative phagolysosome-like vacuole are essential for disease pathogenesis by Coxiella burnetii, the bacterial agent of human Q fever. Previous experimental constraints imposed by the obligate intracellular nature of Coxiella limited knowledge of pathogen strategies that promote infection. Fortunately, new genetic tools facilitated by axenic culture now allow allelic exchange and transposon mutagenesis approaches for virulence gene discovery. Phenotypic screens have illuminated the critical importance of Coxiella's type 4B secretion system in host cell subversion and discovered genes encoding translocated effector proteins that manipulate critical infection events. Here, we highlight the cellular microbiology and genetics of Coxiella and how recent technical advances now make Coxiella a model organism to study macrophage parasitism.


Assuntos
Coxiella burnetii/genética , Coxiella burnetii/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Fagossomos/microbiologia , Apoptose/genética , Autofagia/genética , Sistemas de Secreção Bacterianos , Coxiella burnetii/metabolismo , Coxiella burnetii/patogenicidade , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Mutagênese , Transporte Proteico , Sistemas de Secreção Tipo IV/genética , Virulência/genética
13.
Infect Immun ; 83(2): 661-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422265

RESUMO

The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Macrófagos/microbiologia , Transporte Proteico/genética , Vacúolos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/fisiologia , Linhagem Celular Tumoral , Membrana Celular , Coxiella burnetii/genética , Citosol/metabolismo , Deleção de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Febre Q/microbiologia , Febre Q/patologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/genética , Vacúolos/microbiologia
14.
J Bacteriol ; 196(11): 1925-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24610709

RESUMO

Successful host cell colonization by the Q fever pathogen, Coxiella burnetii, requires translocation of effector proteins into the host cytosol by a Dot/Icm type 4B secretion system (T4BSS). In Legionella pneumophila, the two-component system (TCS) PmrAB regulates the Dot/Icm T4BSS and several additional physiological processes associated with pathogenesis. Because PmrA consensus regulatory elements are associated with some dot/icm and substrate genes, a similar role for PmrA in regulation of the C. burnetii T4BSS has been proposed. Here, we constructed a C. burnetii pmrA deletion mutant to directly probe PmrA-mediated gene regulation. Compared to wild-type bacteria, C. burnetii ΔpmrA exhibited severe intracellular growth defects that coincided with failed secretion of effector proteins. Luciferase gene reporter assays demonstrated PmrA-dependent expression of 5 of 7 dot/icm operons and 9 of 11 effector-encoding genes with a predicted upstream PmrA regulatory element. Mutational analysis verified consensus sequence nucleotides required for PmrA-directed transcription. RNA sequencing and whole bacterial cell mass spectrometry of wild-type C. burnetii and the ΔpmrA mutant uncovered new components of the PmrA regulon, including several genes lacking PmrA motifs that encoded Dot/Icm substrates. Collectively, our results indicate that the PmrAB TCS is a critical virulence factor that regulates C. burnetii Dot/Icm secretion. The presence of PmrA-responsive genes lacking PmrA regulatory elements also suggests that the PmrAB TCS controls expression of regulatory systems associated with the production of additional C. burnetii proteins involved in host cell parasitism.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Coxiella burnetii/citologia , Deleção de Genes , Humanos , RNA Bacteriano , Regulon , Células Vero
15.
Artigo em Inglês | MEDLINE | ID: mdl-25692099

RESUMO

Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.


Assuntos
Repetição de Anquirina , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Retículo Endoplasmático/microbiologia , Orientia tsutsugamushi/metabolismo , Tifo por Ácaros/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Orientia tsutsugamushi/química , Orientia tsutsugamushi/genética , Transporte Proteico
16.
Proc Natl Acad Sci U S A ; 110(49): E4770-9, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248335

RESUMO

Successful macrophage colonization by Coxiella burnetii, the cause of human Q fever, requires pathogen-directed biogenesis of a large, growth-permissive parasitophorous vacuole (PV) with phagolysosomal characteristics. The vesicular trafficking pathways co-opted by C. burnetii for PV development are poorly defined; however, it is predicted that effector proteins delivered to the cytosol by a defective in organelle trafficking/intracellular multiplication (Dot/Icm) type 4B secretion system are required for membrane recruitment. Here, we describe involvement of clathrin-mediated vesicular trafficking in PV generation and the engagement of this pathway by the C. burnetii type 4B secretion system substrate Coxiella vacuolar protein A (CvpA). CvpA contains multiple dileucine [DERQ]XXXL[LI] and tyrosine (YXXΦ)-based endocytic sorting motifs like those recognized by the clathrin adaptor protein (AP) complexes AP1, AP2, and AP3. A C. burnetii ΔcvpA mutant exhibited significant defects in replication and PV development, confirming the importance of CvpA in infection. Ectopically expressed mCherry-CvpA localized to tubular and vesicular domains of pericentrosomal recycling endosomes positive for Rab11 and transferrin receptor, and CvpA membrane interactions were lost upon mutation of endocytic sorting motifs. Consistent with CvpA engagement of the endocytic recycling system, ectopic expression reduced uptake of transferrin. In pull-down assays, peptides containing CvpA-sorting motifs and full-length CvpA interacted with AP2 subunits and clathrin heavy chain. Furthermore, depletion of AP2 or clathrin by siRNA treatment significantly inhibited C. burnetii replication. Thus, our results reveal the importance of clathrin-coated vesicle trafficking in C. burnetii infection and define a role for CvpA in subverting these transport mechanisms.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Vesículas Revestidas por Clatrina/fisiologia , Coxiella burnetii/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Vesículas Revestidas por Clatrina/metabolismo , Clonagem Molecular , Biologia Computacional , Coxiella burnetii/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética
17.
Emerg Microbes Infect ; 2(10): e65, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26038437

RESUMO

Campylobacter jejuni is a gram-negative, curved and rod-shaped bacterium that causes human gastroenteritis. Acute disease is associated with C. jejuni invasion of the intestinal epithelium. Epithelial cells infected with C. jejuni strains containing mutations in the FlpA and CadF fibronectin (Fn)-binding proteins exhibit reduced invasion of host cells and a C. jejuni CadF FlpA double mutant is impaired in the activation of epidermal growth factor receptor (EGFR) and Rho GTPase Rac1. Although these observations establish a role for Fn-binding proteins during C. jejuni invasion, their mechanistic contributions to invasion-associated signaling are unclear. We examined FlpA, a C. jejuni Fn-binding protein composed of three FNIII-like repeats D1, D2 and D3, to identify the interactions required for cellular adherence on pathogen-induced host cell signaling. We report that FlpA binds the Fn gelatin-binding domain via a motif within the D2 repeat. Epithelial cells infected with a flpA mutant exhibited decreased Rac1 activation and reduced membrane ruffling that coincided with impaired delivery of the secreted Cia proteins and reduced cell association. Phosphorylation of the Erk1/2 kinase, a downstream effector of EGFR signaling, was specifically associated with FlpA-mediated activation of ß1-integrin and EGFR signaling. In vivo experiments revealed that FlpA is necessary for C. jejuni disease based on bacterial dissemination to the spleen of IL-10(-/-) germ-free mice. Thus, a novel Fn-binding motif within FlpA potentiates activation of Erk1/2 signaling via ß1-integrin during C. jejuni infection.

18.
PLoS One ; 7(9): e43928, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22962594

RESUMO

Probiotic Lactobacillus can be used to reduce the colonization of pathogenic bacteria in food animals, and therefore reduce the risk of foodborne illness to consumers. As a model system, we examined the mechanism of protection conferred by Lactobacillus species to inhibit C. jejuni growth in vitro and reduce colonization in broiler chickens. Possible mechanisms for the reduction of pathogens by lactobacilli include: 1) stimulation of adaptive immunity; 2) alteration of the cecal microbiome; and, 3) production of inhibitory metabolites, such as organic acids. The Lactobacillus species produced lactic acid at concentrations sufficient to kill C. jejuni in vitro. We determined that lactic acid produced by Lactobacillus disrupted the membrane of C. jejuni, as judged by biophotonics. The spectral features obtained using Fourier-transform infrared (FT-IR) and Raman spectroscopy techniques were used to accurately predict bacterial viability and differentiate C. jejuni samples according to lactic acid treatment. FT-IR spectral features of C. jejuni and Lactobacillus grown in co-culture revealed that the metabolism was dominated by Lactobacillus prior to the killing of C. jejuni. Based on our results, the development of future competitive exclusion strategies should include the evaluation of organic acid production.


Assuntos
Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Galinhas/microbiologia , Lactobacillus/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Probióticos/administração & dosagem , Administração Oral , Animais , Carga Bacteriana/efeitos dos fármacos , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/crescimento & desenvolvimento , Técnicas de Cocultura , Ácido Láctico/biossíntese , Ácido Láctico/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Probióticos/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
19.
Proc Natl Acad Sci U S A ; 109(25): 9692-8, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22615407

RESUMO

The theoretical description of the forces that shape ecological communities focuses around two classes of models. In niche theory, deterministic interactions between species, individuals, and the environment are considered the dominant factor, whereas in neutral theory, stochastic forces, such as demographic noise, speciation, and immigration, are dominant. Species abundance distributions predicted by the two classes of theory are difficult to distinguish empirically, making it problematic to deduce ecological dynamics from typical measures of diversity and community structure. Here, we show that the fusion of species abundance data with genome-derived measures of evolutionary distance can provide a clear indication of ecological dynamics, capable of quantifying the relative roles played by niche and neutral forces. We apply this technique to six gastrointestinal microbiomes drawn from three different domesticated vertebrates, using high-resolution surveys of microbial species abundance obtained from carefully curated deep 16S rRNA hypervariable tag sequencing data. Although the species abundance patterns are seemingly well fit by the neutral theory of metacommunity assembly, we show that this theory cannot account for the evolutionary patterns in the genomic data; moreover, our analyses strongly suggest that these microbiomes have, in fact, been assembled through processes that involve a significant nonneutral (niche) contribution. Our results demonstrate that high-resolution genomics can remove the ambiguities of process inference inherent in classic ecological measures and permits quantification of the forces shaping complex microbial communities.


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Bovinos , Análise de Componente Principal , RNA Ribossômico 16S/genética , Especificidade da Espécie , Suínos
20.
Appl Environ Microbiol ; 78(13): 4580-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22522687

RESUMO

Coxiella burnetii is a ubiquitous zoonotic bacterial pathogen and the cause of human acute Q fever, a disabling influenza-like illness. C. burnetii's former obligate intracellular nature significantly impeded the genetic characterization of putative virulence factors. However, recent host cell-free (axenic) growth of the organism has enabled development of shuttle vector, transposon, and inducible gene expression technologies, with targeted gene inactivation remaining an important challenge. In the present study, we describe two methods for generating targeted gene deletions in C. burnetii that exploit pUC/ColE1 ori-based suicide plasmids encoding sacB for positive selection of mutants. As proof of concept, C. burnetii dotA and dotB, encoding structural components of the type IVB secretion system (T4BSS), were selected for deletion. The first method exploited Cre-lox-mediated recombination. Two suicide plasmids carrying different antibiotic resistance markers and a loxP site were integrated into 5' and 3' flanking regions of dotA. Transformation of this strain with a third suicide plasmid encoding Cre recombinase resulted in the deletion of dotA under sucrose counterselection. The second method utilized a loop-in/loop-out strategy to delete dotA and dotB. A single suicide plasmid was first integrated into 5' or 3' target gene flanking regions. Resolution of the plasmid cointegrant by a second crossover event under sucrose counterselection resulted in gene deletion that was confirmed by PCR and Southern blot. ΔdotA and ΔdotB mutants failed to secrete T4BSS substrates and to productively infect host cells. The repertoire of C. burnetii genetic tools now allows ready fulfillment of molecular Koch's postulates for suspected virulence genes.


Assuntos
Coxiella burnetii/genética , Deleção de Genes , Genética Microbiana/métodos , Biologia Molecular/métodos , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Plasmídeos , Recombinação Genética , Seleção Genética , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...