Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(44): 13414-13428, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36279412

RESUMO

The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by Sporosarcina pasteurii can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.


Assuntos
Solo , Urease , Urease/metabolismo , Adsorção , Aminoácidos , Quartzo , Ácido Aspártico , Carbonato de Cálcio/química , Carbonatos , Glicina , Alanina , Óxido de Alumínio , Treonina , Glutamatos
2.
MethodsX ; 9: 101755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769611

RESUMO

Uranium (U) is a ubiquitous trace element in soils. With increasing in application of U in nuclear energy and nuclear weapon, a large amount of U was dissipated into the environment including soil and water. Earthworm may be an eco-indicator for U bioaccumulation, transformation and transport across the ecosystem. There have been a variety of methods preformed to assess the bioaccumulation of uranium in small organisms such as earthworms, including uranium speciation, subcellular separation, and total U accumulation. All methods require an initial grinding preparation process that allows for the further fractionation of metals and metalloids in earthworms. The slime like mucus that coats the body of a worm presents a challenge in the disintegration and dissolution of the worm body. In order to analyze U subcellular forms, we developed a reliable and effective procedure to grind the worm body into a uniform fine suspension. We conducted a comparative study of disintegration of worms with 3 grinding techniques (agate mortar, liquid nitrogen freezing then agate mortar, and direct sonication) that would assist U subcellular analyses and bioaccumulation. The essences of this new development was as follows:•A scheme for preparation of earthworm samples for investigation of subcellular U forms in earthworms from U.S. army weapon test range soil with various U forms.•The direct sonication of earthworms was found to be the most proficient process in achieving the best preparation for U subcellular analyses with the high precision.

3.
MethodsX ; 9: 101678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433290

RESUMO

Uranium is a naturally occurring radioactive trace element found in rocks, soils, and coals. U may contaminate groundwater and soil from nuclear power plant operations, spent fuel reprocessing, high-level waste disposal, ore mining and processing, or manufacturing processes. Yuma Proving Ground in Arizona, USA has been used depleted uranium ballistics for 36 years where U has accumulated in this army testing site. The objective of this study is to develop a laboratory scheme on the effects of soil moisture regiments on the distribution and partitioning of U in army range soil among solid phase components to mimic U biogeochemical processes in the field. Three moisture regiments were saturated paste, field capacity, and wetting-drying cycle which covered major scenarios in fields from the wet summer season to the dry winter season. Uranium in soils with different forms of U (UO2, UO3, uranyl, and schoepite) was fractionated into 8 operationally defined solid components with sequential selective dissolution procedure. The essences of this new development were as following:•A scheme was developed for investigation of U distribution, partitioning and transformation among solid phase components in army weapon test range soils with various U forms under 3 soil moisture regimes.•Soil moisture was one of major environmental factors in controlling biogeochemical processes and fates of U in army weapon test site.

4.
Langmuir ; 37(43): 12557-12567, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661416

RESUMO

The humic substance is a low-cost and effective adsorbent with abundant functional groups in remediating uranium (U) (VI)-contaminated water. In this research study, leonardite together with leonardite-derived humic acid (L-HA) was used to eliminate U(VI) from water under diverse temperatures (298, 308, and 318 K). L-HA showed a higher adsorption volume for U(VI) than leonardite. U adsorption was varied with pH and increased with temperature. The adsorption kinetics of L-HA had a higher determination coefficient (R2) for pseudo-second-order (R2 > 0.993) and Elovich (R2 > 0.987) models, indicating possible chemisorption-assisted adsorption. This was further supported with the activation energies (15.9 and 13.2 kJ/mol for leonardite and L-HA, respectively). Moreover, U(VI) equilibrium adsorption on leonardite was better depicted with the Freundlich model (R2 > 0.970), suggesting heterogeneous U(VI) adsorption onto the leonardite surface. However, U(VI) adsorption onto L-HA followed the Langmuir equation (R2 > 0.971), which implied the dominant role of monolayer adsorption in controlling the adsorption process. Thermodynamic parameters, including standard entropy change (ΔS0 > 0), Gibbs free energy (ΔG0 < 0), and standard enthalpy change (ΔH0 > 0), suggested a spontaneous and endothermal adsorption process. In addition, ionic species negatively affected U(VI) adsorption by leonardite and L-HA.


Assuntos
Substâncias Húmicas , Urânio , Adsorção , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Cinética , Minerais , Termodinâmica , Urânio/análise , Água
5.
MethodsX ; 8: 101275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434795

RESUMO

A modification method of clay mineral surface was developed to improve its adsorption capacity of uranium. Uranium is a radionuclide with high toxicity and extremely long half-life, which can pollute the environment and endanger human health. This study proposes a new method of activation of clay mineral surface with phosphoric acid for rapid adsorption of uranium from aqueous solution. Compared with other modification methods, this method has the advantages of availability of raw materials, simple operation and good adsorption effects. It provides a cost-effective material to capture uranium ions from water. The essences of this new development are as following: • Activation and changes of clay minerals' surface functionalities with the treatment of phosphoric acid • Controlled modifications of the surface properties of the clay towards the enhancement of U adsorption capacity • Rapid removal of uranium from water.

6.
Sci Total Environ ; 772: 145574, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770862

RESUMO

Optimization of methane production rate can potentially decrease the operational lifetime of the landfill site and assist with better management of methane harvesting from the landfill cells. Increased moisture content in landfill cells is known to increase the rate of methane production. Several natural biopolymers can sustain moisture content in a solid matrix while providing a scaffolding for microbial communities to grow. This research examined the effect of the biopolymer, produced by Rhizobium tropici, on bench-scale methane generation from municipal solid waste. The addition of the R. tropici biopolymer increased the rate of methane production from 27% to 78% when compared to the control study for low and high concentrations of biopolymer amendment, respectively. R. tropici biopolymer shortened the lag phase by up to six days over the control, depending on the level of biopolymer amendment added to the solid waste. The mechanism appears to be facilitating biofilm formation through the combination of increased moisture retention and surface modification of the solid waste. Incorporation of biopolymer amendment in the alternative daily cover activities at commercial landfills could provide a viable approach for full scale application.

7.
MethodsX ; 7: 101022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874940

RESUMO

Biochar is a stable carbon rich by-product synthesized through pyrolysis of plant and animal based biomass, and nano-biochar material has gained increasing attention due to its unique properties for environmental applications. In the present study, a simple cost-effective method for the synthesis of biochar nanoparticles through hydrothermally using agricultural residuals and by-products was developed. Both soybean straw and cattle manure were selected as the feedstock to produce the bulk-biochar. The synthesis procedure involved the digestion of the bulk-biochar with concentrated nitric acid and sulfuric acid in a high pressure condition using a hydrothermal reactor. The suspension was isolated using vacuum filtration with 0.22-µm membrane followed by drying at 65 °C in an oven. Scanning electron microscopy results revealed that both of the biochars had a well-developed porous structure following pyrolysis. Both transmission electron microscopy and the dynamic light scattering results of the hydrothermally treated biochar indicated that the soybean straw and cattle manure biochar nanodots had an average of 5-nm and 4-nm in size, respectively. Overall two raw materials produced 8.5-10% biochar nanodots. The present method presents a simple, quick and cost-effective method for synthesis of biochar nanodots. The method provided a useful tool discovering the applicability biochar nanodots for environmental applications. • Nano-biochar formation from bulk-biochar using hydrothermal reactor • Evaluate nano-biochar's environmental fate and behavior in soil and water • Synthesize multifunctional adsorbent using nano-biochar as primary material.

8.
MethodsX ; 7: 100789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071890

RESUMO

A novel laboratory simulation system has been developed for the study of the corrosion of uranium metal in soils. Corrosion and transportation of depleted uranium (DU) as the metal undergoes weathering as a buried material within the soil environment. The corrosion of uranium metal in soil was not well understood due to the gas-liquid-solid phase of the soil. This study presents a novel method to investigate the change of uranium species during the process of process of oxidation of metallic uranium in these environments. Compared with other techniques used for the study of environmental corrosion of metals in soils, this method has the advantage of low secondary uranium pollution, no energy consumption, and ease of operation. The simulation system has been used for the following studies: •Simultaneously simulate the corrosion of uranium metal in different soil moisture regimes•Study the influence of biogeochemical factors on the corrosion of uranium metal•Investigate the change of uranium species during oxidation.

9.
MethodsX ; 7: 100758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32055456

RESUMO

After depleted uranium (DU) is deposited in the environment, it corrodes producing mobile uranium species. The upward transport mechanism in a desert landscape is associated with the dissolution/precipitation of uranium minerals that vary in composition and solubility in soil pore water. The objective of this study is to develop the laboratory column simulation to investigate the upward transport mechanism with cyclic capillary wetting and drying moisture regimes. Results showed that evaporation driven upward transport occurred even during the first 2 months of wetting-drying regimes. Evaporation driven upward transport may control the U movement in the soil profile in an arid climate. The new system did not generate any uranium-containing wastewater. •Simulates the upward transport process of pollutants with different pollution levels and species.•Simultaneously simulate the transport process of multiple pollutants simultaneously.•Evaluate the influence of biogeochemical factors on pollutant transport such as various cations and anions (Ca, Mg and carbonates) in water.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31052550

RESUMO

Humic acid (HA) is well known as an inexpensive and effective adsorbent for heavy metal ions. However, the thermodynamics of uranium (U) adsorption onto HA is not fully understood. This study aimed to understand the kinetics and isotherms of U(VI) adsorption onto HA under different temperatures from acidic water. A leonardite-derived HA was characterized for its ash content, elemental compositions, and acidic functional groups, and used for the removal of U (VI) from acidic aqueous solutions via batch experiments at initial concentrations of 0-100 mg·L-1 at 298, 308 and 318 K. ICP-MS was used to determine the U(VI) concentrations in solutions before and after reacting with the HA. The rate and capacity of HA adsorbing U(VI) increased with the temperature. Adsorption kinetic data was best fitted to the pseudo second-order model. This, together with FTIR spectra, indicated a chemisorption of U(VI) by HA. Equilibrium adsorption data was best fitted to the Langmuir and Temkin models. Thermodynamic parameters such as equilibrium constant (K0), standard Gibbs free energy (ΔG0), standard enthalpy change (ΔH0), and standard entropy change (ΔS0), indicated that U(VI) adsorption onto HA was endothermic and spontaneous. The co-existence of cations (Cu2+, Co2+, Cd2+ and Pb2+) and anions (HPO42- and SO42-) reduced U(VI) adsorption. The high propensity and capacity of leonardite-derived HA adsorbing U(VI) suggests that it has the potential for cost-effective removal of U(VI) from acidic contaminated waters.


Assuntos
Substâncias Húmicas/análise , Urânio/química , Adsorção , Cátions , Concentração de Íons de Hidrogênio , Cinética , Minerais/química , Temperatura , Termodinâmica , Água
11.
Int J Phytoremediation ; 21(12): 1197-1204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31099254

RESUMO

Electrokinetic-enhanced phytoremediation is an effective technology to decontaminate heavy metal contaminated soil. In this study, we examined the effects of electrokinetic treatments on plant uptake and bioaccumulation of U from soils with various U sources. Redistribution of uranium in soils as affected by planting and electrokinetic treatments was investigated. The soil was spiked with 100 mg kg-1 UO2, UO3, and UO2(NO3)2. After sunflower and Indian mustard grew for 60 days, 1 voltage of direct-current was applied across the soils for 9 days. The results indicated that U uptake in both plants were significantly enhanced by electrokinetic treatments from soil with UO3 and UO2(NO3)2. U was more accumulated in roots than in shoots. Electrokinetic treatments were effective on lowering soil pH near the anode region. Overall, uranium (U) removal efficiency reached 3.4-4.3% from soils with UO3 and uranyl with both plants while that from soil with UO2 was 0.7-0.8%. Electrokinetic remediation treatment significantly enhanced the U removal efficiency (5-6%) from soils with UO3 and uranyl but it was 0.8-1.3% from soil with UO2, indicating significant effects of U species and electrokinetic enhancement on U bioaccumulation. This study implies the potential feasibility of electrokinetic-enhanced phytoremediation of U soils with sunflower and Indian mustard.


Assuntos
Helianthus , Poluentes do Solo , Urânio , Biodegradação Ambiental , Mostardeira , Solo
12.
MethodsX ; 6: 734-739, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011545

RESUMO

Laboratory studies using metal spiked soils are challenging due to soil heterogeneity. This work provides an easy, quick, precise, and accurate technique for the preparation of spiked soils for laboratory research. The process described spiking soil with various uranium species and other heavy metals for laboratory scale pilot experiments under various biogeochemical conditions. The procedure involves grinding both dry soil and metal chemicals into the fine powder. The spiked soil mixture was further homogenized through a modified splitting and combining of the sample by diagonal flipping using plastic sheeting. Comparison of measured concentrations with theoretical values were obtained with <20% precision and accuracy. However, tradition spiking method with metal solution often yielded high heterogeneous spiked soils due to strong metal adsorption in soils. Re-drying and re-grinding of soils were required following the spiking in order to homogenize treated soils, generating inhalable particulates. Thus appropriate personal protective equipment and practices are required for the safety concern. The present method with metal salt powder proved a safe, useful, quick, accurate and precise, and homogenized soil spiking method. •ability to prepare spiked soil with multiple elements•prepared soil at any level of loading•the spiked soil was homogenous for controlled studies.

13.
J Environ Radioact ; 180: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28968541

RESUMO

The occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-dependent and achieved equilibrium in 2 h. It could be well described with pseudo-second-order model, indicating that U(VI) adsorption onto L-HA involved chemisorption. The U(VI) adsorption mass increased with increasing temperature with maximum adsorption capacities of 91, 112 and 120 mg g-1 at 298, 308 and 318 K, respectively. The adsorption reaction was spontaneous and endothermic. We explored the processes of U(VI) desorption from the L-HA-U complex through batch desorption experiments in 1 mM NaNO3 and in artificial seawater. The desorption process could be well described by pseudo-first-order model and reached equilibrium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once adsorbed, the release of U(VI) from L-HA-U complex was minimal in both 1 mM NaNO3and artificial seawater (0.06% and 0.40%, respectively). Being abundant, inexpensive, and safe, L-HA has good potential for use as a U adsorbent from aqueous solution or immobilizing U in soils.


Assuntos
Substâncias Húmicas , Minerais/química , Modelos Químicos , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Cinética , Solo , Urânio/análise , Poluentes Radioativos da Água/análise
14.
J Environ Manage ; 146: 369-372, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25201767

RESUMO

Lead-antimony alloy slugs encased in a brass jackets are common small arms caliber ammunition used for training and target practice. When small caliber ammunition is fired at testing and training ranges, these metals--some of which are toxic--are introduced into the environment. Research was conducted on the effects of bullet on bullet impacts and the resulting bullet fragmentation. The extent of bullet fragmentation, among other factors, affects the formation of mobile metal species from small arms firing ranges. Bullet on bullet impact can increase the surface area to mass ratio of the bullet metal alloys in the soil. The solubility of a metal is typically associated with the specific corrosion rate in the berm environment which is dependent on the surface area of the fragments. The purpose of the study was to analyze the bullet on bullet impact effects in six soil types. Changes in the metal distribution as a result of bullet impact was evaluated through sieve analysis and changes in the particle size distribution. The bullet on bullet impact observed in this study demonstrated a significant and observable shift in the fragmentation profiles for the lead, antimony, and copper in soils after shooting an average of 1050 tungsten-nylon bullets into the legacy lead soils. This study provides new information to assist with determining the potential environmental fate, transport, and environmental availability associated with constant bullet on bullet impact at testing and training ranges.


Assuntos
Armas de Fogo , Poluentes do Solo/química , Solo/química , Antimônio/química , Balística Forense , Humanos , Chumbo/química
15.
Enzyme Microb Technol ; 49(1): 6-10, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22112264

RESUMO

Techniques utilizing ß-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-ß-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as K(m)=910 µM, V(max)=41.0 µM min(-1), V(max)/K(m) 45.0 µmol L(-1)min(-1), the optimal pH as 6.5 ± 1.0, optimal temperature as 38°C, and the Gibb's free energy of activation as 61.40 kJ mol(-1). Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-ß-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 10(3)CFU/100mL) in 230 ± 15.1 min and high concentrations (1.05×10(5)CFU/100mL) in 8.00 ± 1.01 min.


Assuntos
Técnicas Biossensoriais , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Corantes Fluorescentes/metabolismo , Glucuronidase/metabolismo , Microbiologia da Água , Carga Bacteriana , Glucuronídeos/metabolismo , Hidrólise , Cinética , Umbeliferonas/metabolismo
16.
Sci Total Environ ; 409(12): 2397-403, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21440928

RESUMO

Chemical and biogenic sources of phosphate are commonly accepted in situ treatment methods for immobilization of lead (Pb) in soil. The metalloid antimony (Sb), commonly associated with Pb in the environment, exists as either a neutral species or a negatively charged oxyanion. Antimony is used in the manufacture of bullets as a hardening agent, constituting approximately 3% of the bullet mass. Technological solutions to reduce the migration of metals from small arms firing range (SAFR) soils for environmental compliance purposes must be robust with respect to multi-component systems containing both cationic and anionic contaminants. The effect of varying physico-chemical soil properties on Sb mobility post-firing was assessed in this study for six soil types using common analytical protocols and methods related to regulatory criteria. The sands (SM and SP) demonstrated the greatest Sb solubility in post-firing leachate samples and therefore were selected to evaluate the effects of five commercially available stabilization amendments on Sb mobility. Enhanced Sb leaching was experimentally confirmed in the phosphate-treated soils compared to both the untreated control soil and the sulfur-based amendment, and thus suggests competition for negative sorption sites between Sb and phosphate. However, the 5% Buffer Block® calcium phosphate amendment did not exhibit the same enhanced Sb release. This can be attributed to the inclusion of aluminum hydroxide in the amendment composition. Technologies are needed that will adequately immobilize Pb without mobilizing oxyanions such as Sb. Further research will be required to elucidate binding mechanisms and redox conditions that govern the mobility of Sb on SAFRs.


Assuntos
Antimônio/química , Recuperação e Remediação Ambiental/métodos , Fosfatos/química , Poluentes do Solo/química , Solo/química , Armas , Antimônio/análise , Cinética , Chuva/química , Poluentes do Solo/análise , Tempo (Meteorologia)
17.
Environ Sci Technol ; 42(3): 786-92, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18323103

RESUMO

Knowledge of explosives sorption and transformation processes is required to ensure that the proper fate and transport of such contaminants is understood at military ranges and ammunition production sites. Bioremediation of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and related nitroaromatic compounds has met with mixed success, which is potentially due to the uncertainty of how energetic compounds are bound to different soil types. This study investigated the dissolution and sorption properties of TNT and RDX explosives associated with six different soil types. Understanding the associations that explosives have with a different soil type assists with the development of conceptual models used for the sequestration process, risk analysis guidelines, and site assessment tools. In three-way systems of crystalline explosives, soil, and water, the maximum explosive solubility was not achieved due to the sorption of the explosive onto the soil particles and observed production of transformation byproducts. Significantly different sorption effects were also observed between sterile (gamma-irradiated) and nonsterile (nonirradiated) soils with the introduction of crystalline TNT and RDX into soil-water systems.


Assuntos
Substâncias Explosivas/química , Solo/análise , Triazinas/química , Trinitrotolueno/química , Água/química , Adsorção , Cinética , Solubilidade , Soluções
18.
Water Res ; 39(18): 4503-11, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16236339

RESUMO

This study was conducted to assess the applicability of alkaline hydrolysis as an alternative ex situ technology for remediating 2,4,6-trinitrotoluene (TNT)-contaminated water. TNT reactivity had a strong dependence on the reaction pH (11-12) and initial TNT (5-25 mg L(-1)) in batch systems, resulting in pseudo first-order transformation rate, k ranging between 1.9 x 10(-3) and 9.3 x 10(-5) min(-1). In continuous flow stirred-tank reactor (CFSTR) systems with initial TNT of 1 mg L(-1), the highest 74% of TNT reduction was achieved at the reaction pH of 11.9 and 2-day hydraulic retention time under steady-state condition. Oxalate was produced as the major hydrolysate in the CFSTRs, indicating a ring cleavage during alkaline hydrolysis. It was also believed that TNT alkaline hydrolysis occurred through the production of color-forming intermediates via dimerization. It is concluded that alkaline hydrolysis can be an alternative treatment technology for remediation of TNT-contaminated water.


Assuntos
Trinitrotolueno/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Álcalis/química , Cor , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Titulometria , Trinitrotolueno/metabolismo , Água/química
19.
J Chromatogr Sci ; 43(4): 195-200, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15975235

RESUMO

Perchlorate is a compound of increasing concern as an environmental contaminant and is being regulated at increasingly stringent levels. Reliable methods are needed to consistently analyze perchlorate at low concentration levels. This research investigates the use of solid-phase extraction cartridges as an alternative to large-volume injection loops to achieve low-level (microg/L level) perchlorate quantitation. The method involves commercially available strong anion exchange (SAX) cartridges. Water samples are filtered (100 to 1000 mL) using the cartridge, which removes the perchlorate from the solution by anion exchange. Then, after the desired volume is filtered, the perchlorate is extracted using 4 mL of 1% NaOH. In addition, a cleanup method is developed to remove competing anions (chloride, sulfate, and carbonate) that are often found in environmental samples. Analyses are performed with an ion chromatograph using a 10-microL injection loop, yielding a perchlorate method detection limit (MDL) of 210 microg/L. One-liter volumes of a 2-microg/L perchlorate spiked deionized water solution are filtered with SAX SPE. Following extraction and analysis, an MDL of 0.82 microg/L is obtained, comparable to that found for 1-mL injection loop systems (reported as low as 0.53 microg/L). MDL studies are then conducted on perchlorate-amended groundwater (solution concentration of 70 microg/L) and surface water (solution concentration of 10 microg/L) using a filtration volume of 200 mL. The MDLs are 6.7 microg/L for the groundwater and 2.4 microg/L for the surface water.


Assuntos
Cromatografia por Troca Iônica/instrumentação , Percloratos/análise , Poluentes Químicos da Água/análise , Percloratos/isolamento & purificação , Reprodutibilidade dos Testes
20.
J Hazard Mater ; 110(1-3): 53-62, 2004 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15177726

RESUMO

The results of bench-scale laboratory tests and in situ, pilot-scale demonstration of electrokinetic extraction of chromium and cadmium from contaminated soil are presented. The laboratory tests were conducted using 10 cm long samples under current density of 5A/m(2) for 1200 h. Tests were conducted with and without citric acid amendment at the cathode. The results showed that citric acid improved extraction, especially in the sections near the cathode. However, processing was not enough to result in complete cleanup. The field demo was conducted at the Naval Air Weapon Station (NAWS), Point Mugu, California. Three cathodes were centered between six anodes. The anode-cathode spacing was 4.45 m (15 ft). Constant voltage of 60 V ( approximately 13 V/m) was applied for 20 days and then was reduced to 45 V (10 V/m) for 6 months. Citric acid was used to maintain the cathode pH at 4. After 6 months of treatment, 78% of the soil volume has been cleared of chromium or treated to below natural background levels. The results also indicated that 70% of the soil between the electrodes had been cleared of cadmium contamination. A comparison between the bench-scale and field demo showed that the field process was more effective than the lab tests. This indicated that small sample size will induce a negative effect on the efficiency of the process due to an increased impact of the boundaries on the overall process.


Assuntos
Cádmio/isolamento & purificação , Cromo/isolamento & purificação , Poluição Ambiental/análise , Poluentes do Solo/isolamento & purificação , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Misturas Complexas/análise , Eletricidade , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Poluição Ambiental/prevenção & controle , Cinética , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...